\(B=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

a. ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(B=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

b. Ta có \(B-5=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}-5=\frac{2x-3\sqrt{x}+2}{\sqrt{x}}=\frac{2\left(x-2.\sqrt{x}.\frac{3}{4}+\frac{9}{16}\right)-\frac{9}{8}+2}{\sqrt{x}}\)

\(=\frac{2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}}{\sqrt{x}}\)

Ta thấy \(\hept{\begin{cases}2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}>0\\\sqrt{x}>0\forall x>0\end{cases}\Rightarrow B-5>0\Rightarrow B>5}\)

Vậy \(B>5\)

a: \(P=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b: \(P=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi x=1/4

10 tháng 8 2021

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

10 tháng 8 2021

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

8 tháng 3 2020

c/\(P=\frac{\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}}{1-\frac{x+2}{x+\sqrt{x}+1}}\)\(\Leftrightarrow P=\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}:\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

\(\Leftrightarrow\frac{2\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)

Xét P-1 ta có \(\frac{2x+2\sqrt[]{x}+2-x\sqrt{x}+1}{x\sqrt{x}-1}=\frac{2x+2\sqrt{x}-x\sqrt{x}+3}{x\sqrt{x}-1}\)

với x<1 thì tử dương, mẫu âm, với x>1 thì tử âm và mẫu dương

Từ đó ta luuon có P-1\(\le0\RightarrowĐPCM\)

8 tháng 3 2020

a/\(\Leftrightarrow x=\frac{5-\sqrt{5}}{1-\sqrt{5}}+\frac{5+\sqrt{5}}{1+\sqrt{5}}-\frac{25-5}{1-5}-1\)

\(\Leftrightarrow x=0+5-1\Leftrightarrow x=4\)

Thay vào B đc \(B=\frac{4+2}{4+2+1}=\frac{6}{7}\)

b/

6 tháng 8 2020

Bài 1

a, Với \(x=9\)thì \(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{3}{\sqrt{x}}+1=\frac{3}{3}+1=2\)

b, Để \(A=\frac{5}{2}\)thì \(\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{3}{\sqrt{x}}+1=\frac{5}{2}< =>\frac{3}{\sqrt{x}}=\frac{3}{2}< =>x=4\)

Bài 2

a, \(B=\frac{\sqrt{x}-2}{\sqrt{x}}+\frac{4\sqrt{x}+2}{x+\sqrt{x}}\left(đk:x>0\right)\)

\(=1-\frac{2}{\sqrt{x}}+\frac{4\sqrt{x}+2}{x+\sqrt{x}}=\frac{x+5\sqrt{x}+2}{x+\sqrt{x}}-\frac{2}{\sqrt{x}}\)

\(=\frac{x\sqrt{x}+5x+2\sqrt{x}-2x-2\sqrt{x}}{x\sqrt{x}+x}=\frac{x\sqrt{x}+3x}{x\sqrt{x}+x}\)

\(=1+\frac{2x}{x\left(\sqrt{x}+1\right)}=1+\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+3}{\sqrt{x}+1}\)

6 tháng 8 2020

\(A=\frac{3+\sqrt{x}}{\sqrt{x}}\)Thay x = 9 ta có : 

\(VT=\frac{3+\sqrt{9}}{\sqrt{9}}=\frac{3+3}{3}=2\)

Bài ra ta có : \(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{5}{2}\)

\(\Leftrightarrow\frac{3}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}}=\frac{5}{2}\Leftrightarrow\frac{3}{\sqrt{x}}+1=\frac{5}{2}\)

\(\Leftrightarrow\frac{3}{\sqrt{x}}=\frac{3}{2}\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)