Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=\left(\dfrac{4x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2x-4}{x+2}\right)\cdot\dfrac{x+2}{2x}-\dfrac{2}{x-2}\)
\(=\dfrac{4x+2\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{2x}-\dfrac{2}{x-2}\)
\(=\dfrac{4x+2x^2-8x+8}{x-2}\cdot\dfrac{1}{2x}-\dfrac{2}{x-2}\)
\(=\dfrac{2x^2-12x+8}{2x\left(x-2\right)}-\dfrac{2}{x-2}\)
\(=\dfrac{2x^2-12x+8-4x}{2x\left(x-2\right)}=\dfrac{2x^2-16x+8}{2x\left(x-2\right)}\)
\(=\dfrac{x^2-8x+4}{x\left(x-2\right)}\)
b: Thay x=4 vào A, ta được:
\(A=\dfrac{4^2-8\cdot4+4}{4\cdot\left(4-2\right)}=\dfrac{-12}{4\cdot2}=\dfrac{-12}{8}=-\dfrac{3}{2}\)
a, \(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{x+2}\right)\left(\frac{2}{x}-1\right)\)
\(=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\left(\frac{2-x}{x}\right)\)
\(=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}=\frac{-4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=\frac{-4}{x+2}\)
b, Ta có : \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow x=0;-\frac{1}{2}\)
Thay x = 0 vào biểu thức A ta được : \(\frac{-4}{0+2}=\frac{-4}{2}=-2\)
Thay x = -1/2 vào biểu thức A ta được : \(\frac{-4}{-\frac{1}{2}+2}=\frac{-4}{\frac{3}{2}}=-\frac{2}{3}\)
c, Ta có : \(\frac{-4}{x+2}=\frac{1}{2}\Leftrightarrow-8=x+2\Leftrightarrow x=-10\)
d, Ta có : \(\frac{-4}{x+2}\)hay \(x+2\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
a) ĐKXĐ : x \(\ne-2;x\ne1;x\ne0\)
\(A=\left(\frac{x}{x+2}-\frac{4}{x^2+2x}\right):\left(\frac{x^2-2x+1}{x^2-x}\right)=\left(\frac{x}{x+2}-\frac{4}{x\left(x+2\right)}\right):\left(\frac{\left(x-1\right)^2}{x\left(x-1\right)}\right)\)
\(=\frac{x^2-4}{x\left(x+2\right)}:\frac{x-1}{x}=\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}.\frac{x}{x-1}=\frac{x-2}{x}.\frac{x}{x-1}=\frac{x-2}{x-1}\)
b) Để A > 1
=> \(\frac{x-2}{x-1}>1\)
=> \(\frac{x-2}{x-1}-1>0\Rightarrow\frac{-1}{x-1}>0\Rightarrow x-1< 0\Rightarrow x< 1\)
Vậy để A > 1 thì x < 1 và x \(\ne-2;x\ne1;x\ne0\)
c) Ta có \(A=\frac{x-2}{x-1}=\frac{x-1-1}{x-1}=1-\frac{1}{x-1}\)
Để A \(\inℤ\Rightarrow\frac{1}{x-1}\inℤ\Rightarrow1⋮x-1\Rightarrow x-1\inƯ\left(1\right)\Rightarrow x-1\in\left\{1;-1\right\}\)
Khi x - 1 = 1 => x = 2( tm)
Khi x - 1 =-1 => x = 0 (loại)
Vậy x = 2 thì A nguyên
a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)
A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)
=\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)
=\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)
=\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)
= \(\frac{-4}{x+2}\)
b) Ta có : \(2x^2+x=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)
Để A = -1/2 thì
\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)
\(\Leftrightarrow-\left(x+2\right)=-8\)
\(\Leftrightarrow x+2=8\)
\(\Leftrightarrow x=6\)
c) Để A =0,5 thì
\(\frac{-4}{x+2}=0,5\)
\(\Leftrightarrow-8=x+2\)
\(\Leftrightarrow x=-10\)
d) Để A \(\inℤ\)thì
\(-4⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(-4\right)\)
\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)
Lập bảng giá trị
x+2 | -1 | 1 | -2 | 2 | -4 | 4 |
x | -3 | -1 | -4 | 0 | -6 | 2 |
Mà \(x\ne0\)và \(x\ne2;-2\)
\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)
ĐKXĐ: \(x\ne1\)
\(A=\frac{5x+1}{x^3-1}-\frac{1-2x}{x^2+x+1}-\frac{2}{1-x}\)
\(A=\frac{5x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(1-2x\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{5x+1-x+1+2x^2-2x+2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{4x^2+4x+4}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{4\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{4}{x-1}\left(x^2+x+1\ne0\right)\)
Đk : \(x\ne5;x\ne0;x\ne4\)
a) ta có:
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTM\right)\\x=3\left(TM\right)\end{cases}}\)
Thay x= 3 vào biểu thức A , ta được :
\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)
vậy ..............
b) \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(B=\frac{x+5}{2x}+\frac{6-x}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(B=\frac{\left(x-5\right)\left(x+5\right)+2x\left(6-x\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(B=\frac{x^2-25+12x-2x^2-2x^2+2x+50}{2x\left(x-5\right)}\)
\(B=\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)
c) Ta có :
\(P=A.B\)
\(P=\frac{x-5}{x-4}.\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)
\(P=\frac{-3x^2+25+14x}{2x\left(x-4\right)}\)
\(P=\frac{-3x^2+25+14x}{2x^2-8x}\)
a)
Thay x = -1 ( thỏa mãn ĐKXĐ ) vào biểu thức B , ta có :
\(B=\frac{2+1}{-1}=\frac{3}{-1}=-3\)
b) \(A=\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\)
\(A=\frac{1}{x-2}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x+2}\)
\(A=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{3x}{\left(x-2\right)\left(x+2\right)}\)
c) Ta có :
\(P=A.B\)
\(P=\frac{3x}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)
Mà P = 1/2
\(\Leftrightarrow\frac{3x}{\left(x-2\right)\left(x+2\right)}.\frac{-\left(x-2\right)}{x}=\frac{1}{2}\)
\(\Leftrightarrow\frac{3}{x+2}.\frac{-1}{1}=\frac{1}{2}\)
\(\Leftrightarrow\frac{-3}{x+2}=\frac{1}{2}\)
\(\Leftrightarrow x+2=-6\Leftrightarrow x=-8\)( thỏa mãn )
d) P nguyên dương
\(\Leftrightarrow\frac{-3}{x+2}\)nguyên dương
<=> x + 2 thuộc Ư(3) { -1 ; -3 }
Bảng tìm x
x+2 | -1 | -3 |
x | -3(Nhận) | -5(loại) |
Vậy ....................