K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

A=1/1+5+5^2+5^3+...+5^8+5+5^2+5^3+...+5^9=1/1+5+5^2+5^3+...+5^8+5.

Tương tự B=1/1+3+3^2+...+3^8+3

=>A>B.

k nha.

2 tháng 4 2017

=> A>B vì A=1+5+5/1

17 tháng 8 2015

\(A=\frac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}+\frac{5^9}{1+5+5^2+...+5^8}=1+\frac{5^9}{1+5+5^2+....+5^8}=1+\frac{1}{\frac{1+5+5^2+...+5^8}{5^9}}\)

\(B=\frac{1+3+3^2+...+3^8}{1+3+3^2+...+3^8}+\frac{3^9}{1+3+3^2+...+3^8}=1+\frac{1}{\frac{1+3+3^2+....+3^8}{3^9}}\)

Nhận xét: 

\(\frac{1+5+5^2+...+5^8}{5^9}=\frac{1}{5^9}+\frac{1}{5^8}+\frac{1}{5^7}+...+\frac{1}{5}\)\(\frac{1+3+3^2+...+3^8}{3^9}=\frac{1}{3^9}+\frac{1}{3^8}+\frac{1}{3^7}+....+\frac{1}{3}\)

Vì \(\frac{1}{5^9}

22 tháng 1 2018

Cảm ơn quản lý. Mk cũng bí câu này.

6 tháng 9 2017

\(A=1+\frac{5^9}{1+5+..+5^8}\)

      \(=1+\frac{1}{\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5}}\)

Tương tự:

  \(B=1+\frac{1}{\frac{1}{3^9}+\frac{1}{3^8}+...+\frac{1}{3}}\)

Vì \(\frac{1}{5}< \frac{1}{3}\) , \(\frac{1}{5^2}< \frac{1}{3^2}\), . . .

nên: \(\frac{1}{\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5}}>\frac{1}{\frac{1}{3^9}+\frac{1}{3^8}+...+\frac{1}{3}}\)

=> A > B

Vậy đề bạn cho chứng minh A < B là sai nhé.

5 tháng 9 2017

Ta có:\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)

=>\(A=\frac{\left(1+5+5^2+...+5^8\right)}{\left(1+5+5^2+...+5^8\right)}+\frac{5^9}{1+5+5^2+...+5^8}\)

=>\(A=1+\frac{5^9}{1+5+5^2+...+5^8}\)

Ta có:\(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)

=>\(B=\frac{1+3+3^2+...+3^8}{1+3+3^2+...+3^8}+\frac{3^9}{1+3+3^2+...+3^8}\)

=>\(B=1+\frac{3^9}{1+3+3^2+...+3^8}\)

vì:\(1+3+3^2+...+3^8< 1+5+5^2+...+5^8\)

Nên A<B(đpcm).

22 tháng 3 2016

\(A=\frac{1+5+5^2+...+5^8+5^9}{1+5+5^2+...+5^8}=1+\frac{5^9}{5^8}=6\)

\(B=\frac{1+3+3^2+...+3^8+3^9}{1+3+3^2+...+3^8}=1+\frac{3^9}{3^8}=4\)

Từ đó suy ra A>B

2 tháng 1 2018

\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)

\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)

\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)  

Có: \(\frac{1}{1+5+5^2+...+5^8}>0\)              và      \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)

\(\Rightarrow A>B\)

23 tháng 11 2016

kieu nay la ko tinh ra ket qua hay so sanh

A=1+C; voi C=5^9/(1+...5^8)=1/(1/5^9+1/5^8+...+1/5)

B=1+D;voi D=3^9/(1+..3^8)=1/(1/3^9+1/3^8+...+1/3)

C=1/E; voi E=(1/5^9+1/5^8+...+1/5)

D=1/f; voi F=(1/3^9+1/3^8+...+1/3)

=> F-E=(1/3-1/5)+...+(1/3^9-1/5^9) >0=> F>E

=> C>D=> A>B

6 tháng 1 2016

\(\frac{1}{5}A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
\(\frac{1}{3}B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^9}=1\)
Vì  \(\frac{1}{5}<\frac{1}{3}\)Nên \(\frac{1}{5}A<\frac{1}{5}B\)
Vậy A<B

6 tháng 1 2016

ai trả lời cũng sai hết rồi 

Tui Gợi ý là A > B

Bây giờ các bạn ghi cách giải đi