\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{99.100}\)

CMR:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

= 1/1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 +.....+1/99 + 1/100

=( 1/1 + 1/2 +1/3 +1/4 + 1/5 + 1/6 +.....1/99 + 1/100) - 2(1/2 + 1/4 + 1/6 + .....+ 1/100)

=(1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 +.....+ 1/99 + 1/100) - ( 1 + 1/2 + 1/3 + .... + 1/50)

= 1/51 + 1/52 + 1/53 +....+ 1/100....>1/100

= ( 1/51 + 1/52 + 1/53 +.....+ 1/75) + ( 1/76 + 1/77 + 1/78 +.....+ 1/100)

Có 1/51>1/52>1/53>....>1/75 ; 1/76>1/77>1/78>....>1/100

A> 1/75.25 + 1/100.25= 1/3 + 1/4 = 7/12

A< 1/51.25+ 1/76.25 < 1/50.25 + 1/75.25= 1/2+1/3=5/6

Vậy 7/12< A< 5/6

27 tháng 6 2017

=1/1 -1/2 +1/3-1/4+1/4-1/5+...+1/99-1/100

=1/2-1/100=49/100

18 tháng 9 2016

A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) > 1 / (1.2) + 1 / (3.4) = 1 / 2 + 1 / 12 = 7 / 12 (1)
A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100) = (1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 1 - 1 / 2 + 1 / 3 = 5 / 6                (2) 
(1), (2)  => 7 / 12 < A < 5 / 6

18 tháng 9 2016

uikuhikjhkhjjkhjkh

23 tháng 10 2017

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{12}+...+\frac{1}{99000}>\frac{1}{2}+\frac{1}{12}=\frac{7}{12}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-...-\frac{1}{98}-\frac{1}{99}-\frac{1}{100}< 1-\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(\RightarrowĐPCM\)

24 tháng 10 2017

mk ko bt 123

25 tháng 8 2019

bạn vào câu hỏi tương tự nha

25 tháng 8 2019

Trước hết ta biến đổi A thành \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

Do đó : \(A=\left[\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right]+\left[\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right]\)

Ta có : \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75},\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)nên

\(A>\frac{1}{75}\cdot25+\frac{1}{100}\cdot25=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

\(A< \frac{1}{51}\cdot25+\frac{1}{76}\cdot25< \frac{1}{50}\cdot25+\frac{1}{75}\cdot25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy \(\frac{7}{12}< A< \frac{5}{6}\)

2 tháng 6 2017

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Ta có: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=25\cdot\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)

\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=25\cdot\frac{1}{100}=\frac{25}{100}=\frac{1}{4}\)

\(\Rightarrow A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(1\right)\)

Lại có: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=25\cdot\frac{1}{50}=\frac{25}{50}=\frac{1}{2}\)

\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=25\cdot\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)

\(\Rightarrow A< \frac{1}{2}+\frac{1}{3}=\frac{5}{6}\left(2\right)\)

Từ (1) và (2) => đpcm

12 tháng 6 2017

\(\Rightarrow\)(1/1.2) + ( 1/ 3.4) + (1/.6) +...+(1/99.100)

\(\Rightarrow\)(\(\frac{1}{1}\)-1/2 +1/3 -1/4 +...+ 1/99 - 1/100)

\(\Rightarrow\)( 1 - 1/100)

\(=\)99/100

Ta có \(\frac{7}{12}\)=0,5833 

           \(\frac{99}{100}\)=0,99

          \(\frac{5}{6}\)=0,8333

Vì 0,99 > 0,8333 > 0,58333

\(\)\(\Leftrightarrow\)\(\frac{99}{100}\)>\(\frac{5}{6}\)>\(\frac{7}{12}\)

Vậy A lớn nhất trong cả 3 số không phải như điều cần chứng minh.

22 tháng 8 2016

Câu hỏi của Vũ Thị Kim Oanh - Toán lớp 7 - Học toán với OnlineMath