Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{a}{b}\)=\(\frac{c}{d}\)đặt k ta có\(\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)
vậy ta có\(\hept{\begin{cases}\frac{2\left(b.k\right)+2b}{2\left(b.k\right)-2b}=\frac{2b.k+2b}{2b.k-2b}=\frac{2b.\left(k+1\right)}{2b.\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\\\frac{2\left(d.k\right)+2d}{2\left(d.k\right)-2d}=\frac{2d.k+2d}{2d.k-2d}=\frac{2d.\left(k+1\right)}{2d.\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\end{cases}}\)
từ (1) và (2) ta được
=>\(\frac{k+1}{k-1}=\frac{k+1}{k-1}\) vậy\(\frac{2a+2b}{2a-2b}\)=\(\frac{2c+2d}{2c-2d}\)(điều phải chứng minh)
Tớ lỡ tay ấn nhầm, làm tiếp nhá.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a+2c}{3b+2d}\) (ĐPCM).
c) Ta có:
+) \(\dfrac{a}{c}=\dfrac{b}{d}\) mà \(\dfrac{b}{d}=\dfrac{2b}{2d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{2b}{2d}\)
Áp dụng TCDTSBN, ta có:
\(\Rightarrow\dfrac{a}{c}=\dfrac{2b}{2d}=\dfrac{a-2b}{c-2d}\) (ĐPCM)
d) Ta có:
+) \(\dfrac{a}{c}=\dfrac{b}{d}\) mà \(\dfrac{a}{c}=\dfrac{5a}{5b};\dfrac{b}{d}=\dfrac{2b}{2d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{2b}{2d}\)
Áp dụng TCDTSBN, ta có:
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{2b}{2d}=\dfrac{5a-2b}{5c-2d}\) (ĐPCM)
ĐPCM là điều phải chứng minh nhá bạn, còn áp dụng TCDTSBN là áp dụng tính chất dãy tỉ số bằng nhao
Chúc bạn học tốt!
a) Ta có:
+) \(\dfrac{a}{b}=\dfrac{c}{d}\) mà \(\dfrac{c}{d}=\dfrac{4c}{4d}\)
\(\Rightarrow\)\(\dfrac{a}{b}=\dfrac{4c}{4d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\)(ĐPCM)
b) Ta có:
+) \(\dfrac{a}{b}=\dfrac{c}{d}\) mà \(\dfrac{a}{b}=\dfrac{3a}{3b}\); \(\dfrac{c}{d}=\dfrac{2c}{2d}\)
\(\Rightarrow\) \(\dfrac{3a}{3b}=\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{bk+2b}{dk+2d}=\dfrac{b\left(k+2\right)}{d\left(k+2\right)}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a-2b}{c-2d}=\dfrac{bk-2b}{dk-2d}=\dfrac{b\left(k-2\right)}{d\left(k-2\right)}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{a-2b}{c-2d}\rightarrowđpcm\)
ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow4ad=4bc\Leftrightarrow2ad+2ad=2bc+2bc\)
\(\Leftrightarrow2ad-2bc=2bc-2ad\Leftrightarrow ac+2ad-2bc-4bd=ac+2bc-2ad-4bd\)
\(\Leftrightarrow\left(c+2d\right)\left(a-2b\right)=\left(a+2b\right)\left(c-2d\right)\Leftrightarrow\dfrac{a+2b}{c+2d}=\dfrac{a-2b}{c-2d}\left(đpcm\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
từ \(\frac{a+b}{a}=\frac{c+d}{c}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
^-^
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Xét \(VT=\frac{a+2b}{a-2b}=\frac{bk+2b}{bk-2b}=\frac{b\left(k+2\right)}{b\left(k-2\right)}=\frac{k+2}{k-2}\left(1\right)\)
Xét \(VP=\frac{c+2d}{c-2d}=\frac{dk+2d}{dk-2d}=\frac{d\left(k+2\right)}{d\left(k-2\right)}=\frac{k+2}{k-2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2b}{2d}=\frac{a+2b}{c+2d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\frac{a+2b}{a-2b}=\frac{c+2d}{c-2d}\)(đpcm)