K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2016

a/b+c>a/a+b+c

b/c+a>b/a+b+c

c/a+b>c/a+b+c

===>a/b+c+b/c+a+c/a+b>a/a+b+c+b/a+b+c+c/a+b+c(1)

==>biểu thức này >1

6 tháng 5 2016

ta có:

\(\frac{a}{a+b}=\frac{a\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\frac{b}{b+c}=\frac{b\left(a+b\right)\left(c+a\right)}{\left(b+c\right)\left(a+b\right)\left(c+a\right)}\)

\(\frac{c}{c+a}=\frac{c\left(b+c\right)\left(a+b\right)}{\left(c+a\right)\left(b+c\right)\left(a+b\right)}\)

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{a\left(b+c\right)\left(c+a\right)+b\left(a+b\right)\left(c+a\right)+c\left(b+c\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

dễ thấy phần tử của phép tính trên lớn hơn mẫu => phép tính trên cho kết quả lớn hơn 1

6 tháng 5 2016

Ta thấy : a/(a+b) > a/(a+b+c) 

b/(b+c) > b/(a+b+c)

c/(c+a)>c/(a+b+c)

=> a/(a+b) + b/(b+c) + c/(c+a)> a/(a+b+c) +b/(a+b+c) +c/(a+b+c)=(a+b+c)/(a+b+c) = 1 (đpcm)

15 tháng 4 2020

bđt \(\Leftrightarrow\)\(\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)\ge\left(\frac{10}{3}\right)^3abc\) (*) 

đặt \(\left(\sqrt{ab};\sqrt{bc};\sqrt{ca}\right)=\left(x;y;z\right)\)\(\Rightarrow\)\(xyz\le\frac{1}{27}\)

(*) \(\Leftrightarrow\)\(\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\ge\left(\frac{10}{3}\right)^3xyz\)

\(VT\ge\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\)

Có \(xy+1\ge10\sqrt[10]{\frac{xy}{9^9}}\)

Tương tự với \(yz+1\)\(;\)\(zx+1\)\(\Rightarrow\)\(VT\ge10^3\sqrt[10]{\frac{\left(xyz\right)^2}{9^{27}}}\)

Ta cần CM \(10^3\sqrt[10]{\frac{\left(xyz\right)^2}{9^{27}}}\ge\frac{10^3}{3^3}xyz\) đúng với \(xyz\le\frac{1}{27}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

15 tháng 4 2020

Đặt \(P=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)\)

Vì a+b+c=1 nên 

\(P=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)=abc+\frac{1}{abc}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\)

Từ BĐt Cosi cho 3 số dương ta có:

\(\frac{1}{3}=\frac{a+b+c}{3}\ge\sqrt[3]{abc}\Rightarrow abc\le\frac{1}{27}\)

đặt x=abc thì \(0< x\le\frac{1}{27}\)

do đó: \(x+\frac{1}{x}-27-\frac{1}{27}=\frac{\left(27-x\right)\left(1-27x\right)}{27x}\ge0\)

=> \(x+\frac{1}{x}=abc+\frac{1}{abc}\ge27+\frac{1}{27}=\frac{730}{27}\)

Mặt khác: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Nên  \(P\ge\frac{730}{27}+10=\frac{1000}{27}=\left(\frac{10}{3}\right)^3\)

Dấu "=" xảy ra khi a=b=c\(=\frac{1}{3}\)

3 tháng 7 2017

Tổng của 5 số là :

 30 x 5 = 150

Tổng của A, B, C là :

27 x 3 = 81

Tổng của C, D, E là :

32 x 3 = 96

Số C là : 

81 + 96 - 150 = 27

Đáp số : 27

3 tháng 7 2017

Vì trung bình cộng 5 số bài cho là 30; nên tổng 5 số đó là: 

30 x 5 = 150                                                 ( 1 )

vì trung bình cộng của 3 số A;B;C là 27 => tổng 3 số là: 

27 x 3 = 81                                                     ( 2 )

vì trung bình cộng của 3 số C;D;E là 32 => tổng 3 số là: 

32 x 3 = 96                                                     ( a )

Từ ( 1 ) và ( 2 ) => Tổng D + E là: 150 - 81 = 69      ( b )

Từ ( a ) và ( b ) => Số C là: 96 - 69 = 27

Vậy C = 27

14 tháng 12 2016

đề bài sai rồi

Ta cóA=a3+a2-b3+b2+ab-3ab(a-b+1)

=(a3-b3)+(a2+ab+b2)-24ab(do a-b=7)

=(a-b)(a2+ab+b2)+(a2+ab+b2)-24ab

=(a2+ab+b2)(a-b+1)-24ab

mà a-b=7=>A=8a2+8ab+8b2-24ab

=8a2-16ab+8b2

=8(a-b)2=8 . 72=8 . 49=392

DD
20 tháng 8 2021

Trong bốn số \(a,b,c,d\)có ít nhất hai số có cùng số dư khi chia cho \(3\), giả sử đó là \(a,b\).

Khi đó \(a-b\)chia hết cho \(3\).

Nếu bốn số \(a,b,c,d\)có hai số lẻ, hai số chẵn, khi đó giả sử hai số lẻ là \(a,b\)hai số chẵn là \(c,d\)thì \(a-b\)chia hết cho \(2\)và \(c-d\)chia hết cho \(2\).

Nếu bốn số \(a,b,c,d\)có ít nhất ba số có cùng tính chẵn lẻ, giả sử đó là \(a,b,c\)khi đó \(a-b\)chia hết cho \(2\)và \(a-c\)chia hết cho \(2\).

Do đó ở mọi trường hợp, tích của tất cả các hiệu của hai số sẽ chia hết cho \(3\times2\times2=12\).

Ta có đpcm.

16 tháng 7 2018

Số a là:

192/2*3=288

Số b là:

288/4=72

Tổng của 3 số là:

288+72+192=552

              Đáp số: 552

16 tháng 7 2018

SỐ A LÀ

\(192:2\times4=384\)

SỐ B LÀ

\(384:4\times1=96\)

TỘNG LÀ

\(96+384+196=676\)