K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2021

Xét Δ ABC có:
D là trung điểm AB
F là trung điểm AC
~> DE là đường trung bình của Δ ABC
~> DE // BC và DE = 1/2 BC

Bài 2:

a: Gọi I là trung điểm của MC

Ta có: \(MI=IC=\dfrac{MC}{2}\)

\(AM=\dfrac{MC}{2}\)

Do đó: AM=MI=IC

=>AM=MI

=>M là trung điểm của AI

Xét ΔBMC có

D,I lần lượt là trung điểm của CB,CM

=>DI là đường trung bình của ΔBMC

=>DI//BM và \(DI=\dfrac{BM}{2}\)

DI//BM

O\(\in\)BM

Do đó: DI//OM

Xét ΔADI có

M là trung điểm của AI

MO//DI

Do đó: O là trung điểm của AD

b: Xét ΔADI có O,M lần lượt là trung điểm của AD,AI

=>OM là đường trung bình của ΔADI

=>\(OM=\dfrac{1}{2}DI=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BM=\dfrac{1}{4}BM\)

Bài 1:

a: \(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}\)

=>\(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\)

=>\(\dfrac{AB-AB'}{AB'}=\dfrac{AC-AC'}{AC'}\)

=>\(\dfrac{BB'}{AB'}=\dfrac{CC'}{AC'}\)

=>\(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)

b: Ta có: \(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)

=>\(\dfrac{AB'+BB'}{BB'}=\dfrac{AC'+CC'}{CC'}\)

=>\(\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\)

=>\(\dfrac{BB'}{AB}=\dfrac{CC'}{AC}\)

30 tháng 12 2016

ta tính được Ab = 6 cm

vì đề bài cho Ab = 6cm 

bn xem lại đề đi nhé 

h nha 

thanks

19 tháng 9 2017

là sao ko hiểu

7 tháng 3 2019

Xét tam giác ABC và tam giác AED có

\(\hept{\begin{cases}A:gócchung\\\frac{AE}{AB}=\frac{AD}{AC}\left(\frac{8}{20}=\frac{6}{15}\right)\end{cases}}\)

Vậy tam giác ABC đồng dạng với tam giác AED (c-g-c)

5 tháng 7 2020

easy :>

A B C D E

Ta có : \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5} ;\frac{ AD}{AC}=\frac{8}{20}=\frac{2}{5}\)

\(\Rightarrow\frac{AE}{AB}=\frac{AB}{AC}\)

Xét 2 tam giác : ADE và ACB có :

\(\widehat{A}\)chung

\(\frac{AE}{AB}=\frac{AB}{AC}\)

\(\Rightarrow\Delta ADE~\Delta ACB\left(TH2\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

c: ΔABC đồng dạng với ΔHBA

ΔABC đồng dạng với ΔHAC

=>ΔHBA đồng dạng với ΔHAC

d: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

a: Xét ΔABC và ΔCBM có

BA/BC=BC/BM

góc B chung

=>ΔABC đồg dạng với ΔCBM

=>AC/CM=BC/BM=2/3

=>10/CM=2/3

=>CM=15cm

b: ΔABC đồng dạng với ΔCBM

=>góc ACB=góc CMB

mà góc CMB=góc ACM

nên góc ACB=góc ACM

=>CA là phân giác của góc MCB

6 tháng 3 2023

Thiếu c

Xét ΔAMN và ΔABC có

AM/AB=AN/AC

góc A chung

=>ΔAMN đồng dạng với ΔABC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng với ΔABC

12 tháng 3 2023

a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)

\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm

b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)

\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm

a: ΔAHB vuông tại H có HI là đường cao

nên AH^2=AI*AB

b: ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

c: AI*AB=AK*AC

=>AI/AC=AK/AB

Xét ΔAIK và ΔACB có

AI/AC=AK/AB

góc IAK chung

=>ΔAIK đồng dạng với ΔACB

=>góc AKI=góc ABC