Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+b+a\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi x=y=1
b)\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi a=b=c=0
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)
=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)
=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)
=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)
Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)
=> (1) đúng
=> BĐTđược chứng minh
b)Đặt \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).
\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).
Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).
Chứng minh tương tự, ta được:
\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).
Chứng minh tương tự, ta được:
\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).
\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).
\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).
Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).
\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).
\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).
\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(A\ge\frac{15}{2}\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).
Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).
a/ \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4-4y^8+8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4+4y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)
.............................................................................
\(\Leftrightarrow\frac{y}{x-y}=4\)
\(\Leftrightarrow5y=4x\)
b/ Ta có:
\(a-b=a^3+b^3>0\)
Ta lại có:
\(a^2+b^2< a^2+b^2+ab\)
Ta chứng minh
\(a^2+b^2+ab< 1\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)< a-b=a^3+b^3\)
\(\Leftrightarrow a^3-b^3< a^3+b^3\)
\(\Leftrightarrow b^3>0\) (đúng)
Vậy ta có điều phải chứng minh
\(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\Rightarrow\hept{\begin{cases}2c=x+y\\2a=y+z\\2b=x+z\end{cases}}\)
\(2A=\frac{2a}{b+c-a}+\frac{2b}{a+c-b}+\frac{2c}{a+b-c}\)
\(=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\ge6\)
\(\Rightarrow2A\ge6\Leftrightarrow A\ge3."="\Leftrightarrow x=y=z\)
a: \(=\dfrac{5}{2}x-2x+\dfrac{7}{2}=\dfrac{1}{2}x+\dfrac{7}{2}\)
b: \(=\dfrac{-1}{4}x^4-3x^2+\dfrac{9}{4}x\)
c: \(=\dfrac{1}{5}x+\dfrac{1}{15}xy+\dfrac{7}{10}x^2\)
d: \(=-9x^3-1-12y+27xy\)
a) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)
b) \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3=\frac{1}{27}x^3+8y^3\)
c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-\left(3y\right)^3=x^3-27y^3\)
d) \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{2}x^2+\frac{1}{9}\right)=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3=x^6-\frac{1}{9}\)
( x + 4 )( x2 - 4x + 16 ) = x3 + 43 = x3 + 64
( 1/3x + 2y )( 1/9x2 - 2/3xy + 4y2 ) = ( 1/3x )3 - ( 2y )3 = 1/27x3 - 8y3
( x - 3y )( x2 + 3xy + 9y2 ) = x3 - ( 3y )3 = x3 - 27y3
( x2 - 1/3 )( x4 + 1/3x2 + 1/9 ) = ( x2 )3 - ( 1/3 )3 = x6 - 1/27
HĐT số 6 + 7 bạn nhé ^^