Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
\(P=\frac{a^2}{b^2+2bc}+\frac{b^2}{c^2+2ac}+\frac{c^2}{a^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu "=" xảy ra khi \(a=b=c\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(ab+bc+ca=2abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)
\(P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)
Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge\frac{2x-1}{2}\) \(\forall x:0< x< 2\)
\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(2-x\right)^2\)
\(\Leftrightarrow9x^2-12x+4\ge0\)
\(\Leftrightarrow\left(3x-2\right)^2\ge0\) (luôn đúng)
Tương tự: \(\frac{y^3}{\left(2-y\right)^2}\ge\frac{2y-1}{2}\) ; \(\frac{z^3}{\left(2-z\right)^2}\ge\frac{2z-1}{2}\)
Cộng vế với vế: \(P\ge\frac{2\left(x+y+z\right)-3}{2}=\frac{4-3}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\) hay \(a=b=c=\frac{3}{2}\)
Từ giả thiết \(ab+bc+ca=2abc\)suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)thì \(\hept{\begin{cases}x+y+z=2\\x,y,z>0\end{cases}}\)và bất đẳng thức cần chứng minh trở thành \(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)hay \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{1}{2}\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta được \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y+z\right)^2+y\left(z+x\right)^2+z\left(x+y\right)^2}\)\(=\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz}\)
Ta cần chứng minh\(\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz}\ge\frac{1}{2}\)\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\ge x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz\)
Thật vậy, theo một đánh giá quen thuộc ta có \(2\left(x^2+y^2+z^2\right)^2=2\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)\)\(\ge\frac{2\left(x+y+z\right)^2\left(x^2+y^2+z^2\right)}{3}\)
Mà ta lại có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=x^3+y^3+z^3+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y\)
Suy ra ta có \(\frac{2\left(x+y+z\right)^2\left(x^2+y^2+z^2\right)}{3}\ge\frac{4\left(x^3+y^3+z^3+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\right)}{3}\)
Ta cần chỉ ra được \(4\left(x^3+y^3+z^3+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\right)\)\(\ge3\left(x^2y+y^2x+x^2z+z^2x+y^2z+yz^2+6xyz\right)\)
Hay\(4\left(x^3+y^3+z^3\right)+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\ge18xyz\)
Áp dụng bất đẳng thức Cauchy ta được \(4\left(x^3+y^3+z^3\right)\ge12xyz\); \(x^2y+y^2z+z^2x\ge3xyz\); \(xy^2+yz^2+zx^2\ge3xyz\)
Cộng theo vế các bất đẳng thức trên ta được\(4\left(x^3+y^3+z^3\right)+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\ge18xyz\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{3}{2}\)