K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2018

\(Do\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\) \(\Rightarrow0< a,b,c< 1\)

Ta chúng minh cho:

\(x^2-\frac{3}{x}\le5x-7\) với \(0< x< 1\)

\(\Leftrightarrow x^2-\frac{3}{x}-5x+7\le0\)

\(\Leftrightarrow x^3-3-5x^2+7x\le0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-3\right)\le0\) luôn đúng \(\forall0< x< 1\)\(\left(1\right)\)

Áp dụng (1):

\(\Rightarrow VT< 5a-7+5b-7+5c-7\)

\(=5\left(a+b+c\right)-21=5.3-21=-6\left(đpcm\right)\)

Dấu = xảy ra khi:

\(a=b=c=1\)

8 tháng 6 2018

xin lỗi ghi nhầm :

0<a,b,c<3

30 tháng 7 2020

1. Áp dụng BĐT Cauchy dạng Engle, ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

30 tháng 7 2020

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)

Áp dụng BĐT Cauchy cho a ; b dương

Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

1 tháng 12 2016

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)

\(\Leftrightarrow a+b+c=0\)

Xét : \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right).\left(b+c\right).\left(c+a\right)=-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) luôn chia hết cho 3

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

6 tháng 6 2019

\(2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2\left(a^2+b^2+c^2\right)+4\frac{ab+bc+ca}{abc}.\)

\(=2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)\)(vì abc=1)

\(=2\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\)

\(=2\left(a+b+c\right)^2\)

Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)(bất đẳng thức cô si cho ba số không âm)

Đặt \(a+b+c=x\ge3\)

Dễ thấy : \(2x^2-7x+3=\left(2x-1\right)\left(x-3\right)\ge0\)

Hay \(2\left(a+b+c\right)^2-7\left(a+b+c\right)+3\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge7\left(a+b+c\right)-3\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow}a=b=c=1\)

6 tháng 6 2019

Đặt A = a + b + c . 

Áp dụng BĐT Cosi cho 3 số thực dương ta có : \(A\ge3^3\sqrt{abc}=3\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-7\left(a+b+c\right)+3\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\cdot\frac{ab+bc+ca}{abc}-7\left(a+b+c\right)+3\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)-7\left(a+b+c\right)+3\)

\(\Leftrightarrow2\left(a+b+c\right)^2-7\left(a+b+c\right)+3\)

\(\Leftrightarrow2A^2-7A+3=\left(2A-1\right)\left(A-3\right)\ge0\)

Dấu "=" xảy ra khi \(a=b=c=1\)

5 tháng 2 2020

1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  với \(a,b>0\) (1) 

Thật vậy : BĐT  (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)  ( luôn đúng )

Vì vậy BĐT (1) đúng.

Áp dụng vào bài toán ta có:

\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

                                                                 \(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy ta có điều phải chứng minh !

5 tháng 2 2020

Bài 1 : 

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)

Cộng theo từng vế 

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)

27 tháng 8 2019

1/ Đặt

\(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z,xyz=1\)thì ta có

\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow xy+yz+zx=x+y+z\)

\(\Leftrightarrow xyz-xy-yz-zx+x+y+z-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow x=1;y=1;z=1\)

\(\Rightarrow\frac{a}{b^2}=1;\frac{b}{c^2}=1;\frac{c}{a^2}=1\)

\(\Leftrightarrow a=b^2;b=c^2;c=a^2\)

27 tháng 8 2019

2/ Đặt

\(ab=x,bc=y,ca=z\) cần tính

\(P=\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\left(1+\frac{y}{x}\right)\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)

Xét \(x+y+z=0\)

\(\Rightarrow P=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-1\)

Xét \(x^2+y^2+z^2-xy-yz-zx=0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)