Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử b= min {a,b,c}
\(VT\ge\frac{a^3+b^3+c^3}{\frac{2\left(a+b+c\right)^3}{27}}+\frac{1}{2}\left(\Sigma\frac{\left(a+b\right)^2}{ab+c^2}+\Sigma\frac{\left(a-b\right)^2}{ab+c^2}\right)\)
\(\ge\left[\frac{27\left(a^3+b^3+c^3\right)}{2\left(a+b+c\right)^3}+\frac{2\left(a+b+c\right)^2}{\left(ab+bc+ca+a^2+b^2+c^2\right)}\right]\)
Sau khi quy đồng ta cần chứng minh biểu thức sau đây không âm:
Đó là điều hiển nhiên vì b = min {a,b,c}
Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:
\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)
Giải phần dấu "=" ra ta được a = b =c
Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)
Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)
Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)
\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)
Bài toán đúng theo kết quả câu 1.
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^4}{a^2b+9a}+\frac{b^4}{ab^2+9b}+\frac{b^4}{b^2c+9b}+\frac{c^4}{bc^2+9c}+\frac{c^4}{c^2a+9c}+\frac{a^4}{ca^2+9a}\)
\(\ge \frac{(a^2+b^2+b^2+c^2+c^2+a^2)^2}{ab(a+b)+bc(b+c)+ca(c+a)+18(a+b+c)}=\frac{4(a^2+b^2+c^2)^2}{ab(a+b)+bc(b+c)+ca(c+a)+162}\)
Áp dụng BĐT AM-GM:
\(a^3+b^3+c^3=\frac{a^3+b^3+b^3}{3}+\frac{b^3+c^3+c^3}{3}+\frac{c^3+a^3+a^3}{3}\geq ab^2+bc^2+ca^2\)
Tương tự: \(a^3+b^3+c^3\geq a^2b+b^2c+c^2a\)
\(\Rightarrow a^3+b^3+c^3\geq \frac{ab(a+b)+bc(b+c)+ca(c+a)}{2}\)
\(\Rightarrow a^3+b^3+c^3+ab(a+b)+bc(c+a)+ca(c+a)\geq \frac{3}{2}[ab(a+b)+bc(b+c)+ca(c+a)]\)
\(\Leftrightarrow (a^2+b^2+c^2)(a+b+c)\geq \frac{3}{2}[ab(a+b)+bc(b+c)+ca(c+a)]\)
\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\leq 6(a^2+b^2+c^2)\)
Do đó: \(\text{VT}\geq \frac{4(a^2+b^2+c^2)^2}{6(a^2+b^2+c^2)+162}\)
Đặt \(a^2+b^2+c^2=t\). Dễ thấy \(t\geq \frac{(a+b+c)^2}{3}=27\). Khi đó:
\(\frac{4(a^2+b^2+c^2)^2}{6(a^2+b^2+c^2)+162}-9=\frac{4t^2}{6t+162}-9=\frac{2(t-27)(2t+27)}{6t+162}\geq 0, \forall t\geq 27\)
\(\Rightarrow \text{VT}\geq \frac{4t^2}{6t+162}\geq 9\) (đpcm). Dấu "=" xảy ra khi $a=b=c=3$
Bài 2:
Áp dụng BĐT AM-GM:
\(\text{VT}=a-\frac{ab^2}{a+b^2}+b-\frac{bc^2}{b+c^2}+c-\frac{ca^2}{c+a^2}=(a+b+c)-\left(\frac{ab^2}{a+b^2}+\frac{bc^2}{b+c^2}+\frac{ca^2}{c+a^2}\right)\)
\(\geq (a+b+c)-\left(\frac{ab^2}{2\sqrt{ab^2}}+\frac{bc^2}{2\sqrt{bc^2}}+\frac{ca^2}{\sqrt{ca^2}}\right)=(a+b+c)-\frac{1}{2}(\sqrt{ab^2}+\sqrt{bc^2}+\sqrt{ca^2})\)
\(\geq (a+b+c)-\frac{1}{2}\left(\frac{ab+b}{2}+\frac{bc+c}{2}+\frac{ca+a}{2}\right)=\frac{3(a+b+c)-(ab+bc+ac)}{2}\)
Tiếp tục áp dụng BĐT AM-GM:
\((a+b+c)^2\geq 3(ab+bc+ac)=(a^2+b^2+c^2)(ab+bc+ac)\geq (ab+bc+ac)^2\)
\(\Rightarrow a+b+c\geq ab+bc+ac\)
Do đó: \(\text{VT}\geq \frac{3(a+b+c)-(a+b+c)}{2}=\frac{a+b+c}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
ÁP dụng BĐT cô-si, ta có \(a^3+b^3+c^3\ge3abc\Rightarrow\frac{a^3+b^3+c^3}{2abc}\ge\frac{3}{2}\)
Mà \(ab\le\frac{a^2+b^2}{2}\Rightarrow\frac{a^2+b^2}{c^2+ab}\ge\frac{2\left(a^2+b^2\right)}{2c^2+a^2+b^2}\)
Tương tự, ta có
\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\ge2\left(\frac{a^2+b^2}{a^2+c^2+b^2+c^2}+...\right)\)
Đặt \(\left(a^2+b^2;...\right)=\left(x;y;z\right)\)
Ta có VT\(\ge\frac{3}{2}+2\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=\frac{3}{2}+2\left(\frac{x^2}{xy+zx}+\frac{y^2}{ỹ+yz}+\frac{z^2}{zx+zy}\right)\)
=> \(VT\ge\frac{3}{2}+2.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+3=\frac{9}{2}\)
=> \(A\ge\frac{9}{2}\left(ĐPCM\right)\)
Dấu = xảy ra <=> a=b=c>0
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
a)Bạn đặt A = a/ (1 + a^2). => A + a^2A = a => a^2A - a + A = 0. ta có delta = 1 - 4A^2 ( gọi ẩn số là a). => để pt có nghiệm <=> 1 - 4A^2 >= 0 => để phương trình có nghiệm => 1 - 4A^2 >= 0 => 1 >= 4A^2 => A =< 1/2. => max A = 1/2. bạn giải tương tự B = b/(1+b^2), C = c/(1 + c^2) rồi cộng vào nhau là ra ngay thôi. Đây là cách giải bằng delta.
b)bạn có (a^2 - b^2)/c = ((a+b)(a-b))/c >= (c + c)(a-b)/c = 2(a - b). Bạn có c =< b ( theo đề bài) = > c + b =< 2b => (c + b) =<2b => (c + b)/b <= 2 => (c + b)/a <= 2. từ đó ta có (c^2 - b^2)/a = (c -b )(c + b)/a >= 2(c - b).
chứng minh tương tự:(a + c)/b > 1 => (a^2 - c^2)/b >= a - c.( sr ngại gõ lắm) => cộng 3 vế ta được đpcm