Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) Để x > 0
=> \(2a-5< 0\)
\(\Rightarrow2a< 5\)
\(\Rightarrow a< 2,5\)
\(\text{Vậy }x>0\Leftrightarrow a< 2,5\)
b) Để x < 0
\(\Rightarrow2a-5>0\)
\(\Rightarrow2a>5\)
\(\Rightarrow a>2,5\)
\(\text{Vậy }x< 0\Leftrightarrow a>2,5\)
c) Để x = 0
\(\Rightarrow2a-5=0\)
\(\Rightarrow2a=5\)
\(\Rightarrow a=2,5\)
\(\text{Vậy }x=0\Leftrightarrow a=2,5\)
2) \(\text{Vì }a\inℤ\Rightarrow3a-5\inℤ\)
\(\text{mà }x\inℤ\Leftrightarrow3a-5⋮4\)
\(\Rightarrow3a-5\in B\left(4\right)\)
\(\Rightarrow3a-5\in\left\{0;4;8;...\right\}\)
\(\Rightarrow3a\in\left\{5;9;13;....\right\}\)
\(\Rightarrow a\in\left\{\frac{5}{3};3;\frac{13}{3};6;....\right\}\)
\(\text{Mà }a\inℤ\Rightarrow a\in\left\{3;6;9;...\right\}\text{thì }x\inℤ\)
Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Leftrightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
TH1. Nếu a + b + c = 0 thì : \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2. Nếu \(a+b+c\ne0\) thì a = b = c
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a^3}=8\)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
=> đpcm
Ta có
ab-ac+bc=c^2-1
suy ra ab-ac+bc-c^2+1=0
a.(b-c)+bc-cc=-1
a.(b-c)+c.(b-c)=-1
(a+c).(b-c)=-1
Suy ra ta có 2 trường hợp:
a+c=-1 thì b-c=1 (1)
a+c=1 thì b-c=-1 (2)
Từ (1) và (2) suy ra b-c=-(a+c)
b-c=-a-c
b=-a
Vì a và b đoi nhau nen a/b=-1
Vậy a/b=-1
Nhớ k cho mình nha,mình giai rõ ràng và nhanh nhất đó
Ta có:
ab - ac + bc - c2 = -1
=> a.(b - c) + c.(b - c) = -1
=> (b - c).(a + c) = -1
=> b - c = 1; a + c = -1 hoặc b - c = -1; a + c = 1
=> (b - c) + (a + c) = 1 + (-1) hoặc (b - c) + (a + c) = -1 + 1
=> b + a = 0
=> a và b là 2 số đối nhau
=> \(\frac{a}{b}=-1\)
a # b # c # a,thoan man a/(b-c)+b/(c-a)+c/(a-b)=0
<=> a(c-a)(a-b)+b(a-b)(b-c)+c(b-c)(c-a)=0
<=>-a(a-n)(a-c)-b(b-a)(b-c)+c(c-a)(c-b)(c-b)=0
<=>a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)=0 (*)
Tu (*)ta thay a,b,c doi xung nen ko giam tinh tong quat gia su :a>b>c
Nếu a,b,c đều ko âm ,giả thiết trên thành a>b>c>hoặc=0
(*)<=>(a-b)(a^2 - ac - b^2 +bc)+c(c-a)(c-b)=0
<=>(a-b)[(a+b)(a-b)- c(a-b)]+c(c -a)(c-b)=0
<=>(a-b)^2.(a+b-c)+c(a-c)(b-c)=0 (**)
Thấy b- c > 0 (do b > c)và a > 0 =>a+b-c > 0 =>(a-b)^2 . (a+b-c)>0 va c(a-c)(b-c)>hoac = 0
=>(a-b)^2.(a+b-c)+c(a-c)(b-c)>0 mâu thuẫn với (**)
Vay c < 0 (noi chung la trong a,b,c phai co so am )
Nếu cả a,b,c đều không có số dương do giả thiết trên ta có :0 > hoac = a > hoac = b>hoac = c
(*)<=>a(a-b)(a-c)+(b-c)(b^2-ab-c^2 + ca)=0
<=>a(a-b)(a-c)+(b-c)[(b+c)(b-c)-a(b-c)]=0
<=>a(a-b)(a-c)+(b-c)^2.(b+c-a)=0 (***)
a-b > 0 ;a- c > 0 => a(a-b)(a-c)< hoac = 0 (vi a < hoac = 0)
Và b<0 ; c -a < 0 => b+ c -a < 0=>(b-c)^2.(b+c-a)<0
=> a(a-b)(a-c)+(b-c)^2.(b+c-a)<0 mâu thuẫn với (***)
Chứng tỏ trong a,b,c phải có số dương
Tóm lại trong 3 số a,b,c phải có số dương và âm .
Ta có:
M=1/a^2+1/b^2+1/c^2 = (a^2b^2 + b^2c^2 + c^2a^2)/a^2b^2c^2
Bình phương 2 vế a+b+c=0
=> a^2+b^2+c^2 = -2(ab+bc+ca)
=> (a^2 +b^2 +c^2)^2 =4 [a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a+b+c)]
=> (a^2 +b^2 +c^2)^2/4 = a^2b^2 + b^2c^2 + c^2a^2
=> M = [(a^2 +b^2 +c^2)/2abc]^2
Vì a,b,c là các số hữu tỷ
=> M là bình phương của số hữu tỷ
\(M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\)
\(=\frac{\left(ab+bc+ca\right)^2-2b^2ac-2c^2ab-2a^2bc}{a^2b^2c^2}\)
\(=\frac{\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)}{a^2b^2c^2}\)
\(=\frac{\left(ab+bc+ca\right)^2}{a^2b^2c^2}=\left(\frac{ab+bc+ca}{abc}\right)^2\) là bình phương 1 số hửu tỉ.