K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

a) Xét ΔAPH và ΔAQH, có:

góc APH = góc AQH = 90o (gt)

AH: cạnh chung

góc PAH = góc QAH (gt)

Vậy ΔAPH = ΔAQH (cạnh huyền - góc nhọn)

b) Ta có: ΔABC cân tại A (gt)

Lại có: Vì AH là phân giác của ΔABC => AH cũng là đường trung trực của ΔABC.

Bài 1a) Cho 🔺ABC vuông tại A, biết AB=9cm; BC=15cm. Tính chu vi hình 🔺ABC. b) Cho🔺ABC cân tại A biết góc C=50°.Tính số đo góc A và BBài 2Cho 🔺ABC có AB=6 cm, AC=8cm, BC=10cma) CM: 🔺ABC vuông. b) Kẻ AH vuông góc với BC. Biết AH = 4,8 cm. Tính độ dài đoạn BH, CH. c) Lấy điểm I bất kì trên cạnh AH ( I không trùng với A và H). Cm: IC>IB. Bài 3Cho 🔺ABC vuông tại A, BD là phân giác của góc B. Vẽ Đi vuông góc...
Đọc tiếp

Bài 1

a) Cho 🔺ABC vuông tại A, biết AB=9cm; BC=15cm. Tính chu vi hình 🔺ABC. 

b) Cho🔺ABC cân tại A biết góc C=50°.Tính số đo góc A và B

Bài 2

Cho 🔺ABC có AB=6 cm, AC=8cm, BC=10cm

a) CM: 🔺ABC vuông. 

b) Kẻ AH vuông góc với BC. Biết AH = 4,8 cm. Tính độ dài đoạn BH, CH. 

c) Lấy điểm I bất kì trên cạnh AH ( I không trùng với A và H). Cm: IC>IB. 

Bài 3

Cho 🔺ABC vuông tại A, BD là phân giác của góc B. Vẽ Đi vuông góc với BC (I thuộc BC). Gọi K là giao điểm của hai đường thẳng Đi và AB. Cm rằng 

a) 🔺ABC=🔺IBD

b) BD vuông góc với AI

c) DK=DC

d) Cho AM=6cm; AC=8cm.Hãy tính IC?

Bài 4

Cho 🔺ABC cân tại A. Tia phân giác của góc Bác cắt BC tại D

a) CM: 🔺ADB=🔺ADC

b) CM BD =DC; AD vuông góc với BC

c) Kể DK vuông góc với AB tại K, DE vuông góc với AC tại E. CM: 🔺DKE cân tại D. 

CM: KE//BC

Bài 5 

Cho 🔺 ABC vuông tại A, biết AB= 3cm,AC=4cm.Tia phân giác gốc B cắt cạnh AC tại F. Qua F kể đường thẳng vuông góc với cạnh BC tại K

Bài 6

Cho 🔺MNP cân tại M. Kẻ MI vuông góc với NP (I thuộc NP) 

a) CM: IN=IP

b) Kẻ IH vuông góc với Mn (H thuộc MN) và IK vuông góc với MP( K thuộc MP). CM: 🔺IHK là🔺cân. 

c) CM: HK//NP

Bài 7

Cho 🔺ABC có góc B<góc C

a) So sánh độ dài các cạnh AB và AC

b) Gọi M là Trung điểm của BC. Trên tia đối của tia Mà lấy điểm D sao cho MD=MA. CM: góc CDA< góc CAD

Giải hết đống này hộ mình nha. Mình mãi mình KTTT rồi. Thanks all ❤️❤️❤️

 

 

 

0

a: Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên H là trung điểm của BC

hay BH=CH

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có 

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

c: Xét ΔABC có 

AD/AB=AE/AC

Do đó: DE//BC

6 tháng 5 2019

a) Vì tam giác ABC cân tại A =>AB=AC và góc ABC=góc ACB hay góc HBM= góc KCM

Vì M là trung điểm của BC =>BM=MC

   Xét tam giác ABM và tam giác ACM có

               AB=AC

               BM=CM

               Chung cạnh AM

  Do đó tam giac ABM = tam giác ACM (c.c.c)

 b) Vì MH vuông góc với AB =>góc BHM=90

          MK vuông góc với AC =>góc MKC=90

          Do đó góc BHM = góc MKC =90

      Xét tam giac BHM và tam giác CKM có

             góc BHM= góc CKM=90

             BM=CM

             góc HBM= góc KCM

   Do đó tam giac BHM = tam giac CKM (cạnh huyền-góc nhọn)

    =>BH=CK (hai cạnh tương ứng)

c)Vì BP vuông góc với AC,MK vuông góc với AC

      =>BP song song với MK
      =>góc PBM= góc KMC ( hai góc đồng vị)

Vì tam giác BHM = tam giác CKM => góc BMH = góc CMK

      Do đó góc PBM = góc HMB hay góc IBM = góc IMB

  Trong tam giác BIM có góc IBM = góc IMB => tam giác BIM cân

16 tháng 7 2016

a/ xét tam giác ABC cân tại A ta có

AH là đường phân giác(gt)

=> AH là đường trung tuyến; AH là đường cao

=>H là trung điểm của BC và AH vuông góc với BC

\(\)

b/ ta có: H là trung điểm của BC

\(\Rightarrow BH=\frac{1}{2}BC\)

\(\Rightarrow BH=6cm\)

xét tam giác ABH vuông tại H ta có

\(AB^2=BH^2+AH^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)

\(\Rightarrow AH^2=64\)


\(\Rightarrow AH=8cm\)

ta có

\(S_{ABC}=\frac{AH.BC}{2}\)

\(S_{ABC}=48cm^2\)

c/ xét tam giác MBH vuông tại M và tam giác NCH vuông tại N ta có

BH=HC(H là trung điểm của BC)

góc MBH=góc NCH (tam giác ABC vuông tại A)

=> tam giác MBH=tam giác NCH (ch-gn)

=> MH=NH (2 cạnh tuong ứng)

cmtt tam giác BGH=tam giác CNH (ch-gn)

=> QH=NH(2 cạnh tương ứng)

mà MH=NH(cmt)

nên QH=MH

=> tam giác GHM cân tại H

\(\)

10 tháng 2 2020

Vẽ hình rồi mình làm cho!!:u

(mình ngại vẽ):,<

23 tháng 4 2017

Hình tự vẽ

Xét \(\Delta MBH\)và \(\Delta NCH\)

\(\widehat{BMH}=\widehat{CNH}=90^o\)

\(BH=CH\left(cma\right)\)

\(\widehat{NBH}=\widehat{NQH}\)(Tam giác ABC cân tại A

\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right)\)

\(MH=NH\left(2ctu\right)_{\left(1\right)}\)

Xét \(\Delta BQH\)và \(\Delta CNH\)

\(\widehat{Q}=\widehat{CNH}=90^o\)

\(BH=CH\left(cma\right)\)

\(\widehat{BHQ}=\widehat{NHC}\)(đối đỉnh)

\(\Rightarrow\Delta BQH=\Delta CNH\left(ch-gn\right)\)

\(\Rightarrow QH=NH\left(2ctu\right)_{\left(2\right)}\)

Từ \(\left(1\right),\left(2\right)\Rightarrow MH=QH\)

=> \(\Delta HQM\)cân tại H