\(Cho\)\(a>b>0\)

\(a.Biết\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

a) Xét : \(P^2=\frac{3\left(a-b\right)^2}{3\left(a+b\right)^2}=\frac{3\left(a^2+b^2\right)-6ab}{3\left(a^2+b^2\right)+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\)

Vì a > b > 0 nên P > 0 . Vậy \(P=\frac{1}{2}\)

b) Tương tự.

24 tháng 7 2016

a/ \(3a^2+3b^2=10ab\Leftrightarrow3\left(a^2+b^2\right)=10ab\Leftrightarrow a^2+b^2=\frac{10ab}{3}\)

\(\Leftrightarrow a^2+b^2-2ab=\frac{10ab}{3}-2ab\Leftrightarrow\left(a-b\right)^2=\frac{4ab}{3}\)

tương tự: \(a^2+b^2=\frac{10ab}{3}\Leftrightarrow a^2+b^2+2ab=\frac{10ab}{3}+2ab\Leftrightarrow\left(a+b\right)^2=\frac{16ab}{3}\)

\(\Rightarrow P^2=\left(\frac{a-b}{a+b}\right)^2=\frac{\frac{4ab}{3}}{\frac{16ab}{3}}=\frac{1}{4}\Rightarrow P=\frac{1}{2}\)

bố 32 tuổi

con 6 tuổi

ủng hộ nha

24 tháng 7 2016

Câu b). Theo đầu bài ta có:
\(2a^2+2b^2=5ab\)
\(\Rightarrow2a^2+2b^2=ab+4ab\)
\(\Rightarrow2a^2+2b^2-4ab=ab\)
\(\Rightarrow2\left(a^2+b^2-2ab\right)=ab\)
\(\Rightarrow\left(a-b\right)^2=\frac{ab}{2}\)
\(\Rightarrow a-b=\sqrt{\frac{ab}{2}}\)
Mà \(2a^2+2b^2=5ab\)
\(\Rightarrow2a^2+2b^2=9ab-4ab\)
\(\Rightarrow2a^2+2b^2+4ab=9ab\)
\(\Rightarrow2\left(a^2+b^2+2ab\right)=9ab\)
\(\Rightarrow\left(a+b\right)^2=\frac{9ab}{2}\)
\(\Rightarrow a+b=\sqrt{\frac{9ab}{2}}\)
Từ trên suy ra:
\(Q=\frac{a+b}{a-b}=\left(a+b\right):\left(a-b\right)\)
\(\Leftrightarrow Q=\sqrt{\frac{9ab}{2}}:\sqrt{\frac{ab}{2}}\)
\(\Leftrightarrow Q=\sqrt{\frac{9ab}{2}:\frac{ab}{2}}\)
\(\Leftrightarrow Q=\sqrt{\frac{9\cdot ab\cdot2}{ab\cdot2}}\)
\(\Leftrightarrow Q=\sqrt{9}=3\)

26 tháng 11 2019

Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\)  lien tiep la duoc 

Chuc bn thanh cong

27 tháng 11 2019

svác-xơ ngược dấu.

\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)

Tương tự 

\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)

\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)

Cộng lại ta được:

\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)

13 tháng 7 2017

anh nên lên học 24h để được giả đáp tốt hơn !!

3 tháng 1 2018

Áp dụng Cauchy, ta có:

    \(a^4+b^2\ge2\sqrt{a^4b^2}=2a^2b\)

\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}\le\frac{1}{2a^2b+2ab^2}\)

Tượng tự:

 \(\frac{1}{b^4+a^2+2a^2b}\le\frac{1}{2a^2b+2ab^2}\)

\(\Rightarrow A\le\frac{2}{2ab\left(a+b\right)}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}=2\)\(\Leftrightarrow\frac{a+b}{ab}=2\Rightarrow a+b=2ab\)

\(\Rightarrow A\le\frac{2}{\left(a+b\right)^2}\)

Áp dụng Schwarzt: \(2=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge a+b\ge2\Rightarrow\left(a+b\right)^2\ge4\)

\(\Rightarrow A\le\frac{2}{4}=\frac{1}{2}\)

Dấu = xảy ra khi a=b=1

3 tháng 1 2018

Áp dụng bđt cosi ta có : 

A < = 1/2a^2b+2/ab^2  +  1/2ab^2+2a^2b

= 1/2ab . (1/a+b + 1/a+b) = 1/2ab . 2/a+b = 1/(a+b).(ab)

< = 1/\(\sqrt{ab}.2.ab\) = 1/2\(\sqrt{ab}^3\)

Có : 2 = 1/a + 1/b >= 2\(\sqrt{\frac{1}{ab}}\)

=> \(\sqrt{\frac{1}{ab}}\)< = 1

=> 1/ab < = 1

=> ab > =1

=> A < = 1/2.1 = 1/2

Dấu "=" xảy ra <=> a=b=1

Vậy GTLN của A = 1/2 <=> a=b=1

Tk mk nha

6 tháng 11 2016

Th1: P=0

TH2: P=-1