Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=4+4^2+4^3+...+4^{99}+4^{100}\)
\(A=4\cdot\left(1+4\right)+4^3\cdot\left(1+4\right)+...+4^{99}\cdot\left(1+4\right)\)
\(A=4\cdot5+4^3\cdot5+...+4^{99}\cdot5\)
\(A=5\cdot\left(4+4^3+...+4^{99}\right)⋮5\left(đpcm\right)\)

\(A=4+4^2+4^3...+4^{99}+4^{100}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)
\(A=\left(4.1+4.4\right)+\left(4^3.1+4^3.4\right)+...+\left(4^{99}.1+4^{99}.4\right)\)
\(A=4.5+4^3.5+...+4^{99}.5\)
\(A=5.\left(4+4^3+...+4^{99}\right)⋮5\left(ĐPCM\right)\)

Bạn vào câu hỏi tương tự là có nha !
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

a ) S = 4 + 42 + 43 + 44 + ..... + 499 + 4100
⇒ S = ( 4 + 42 ) + ( 43 + 44 ) + .... + ( 497 + 498 ) + ( 499 + 4100 )
⇒ S = 4.( 1 + 4 ) + 43.( 1 + 4 ) + ...... + 497.( 1 + 4 ) + 499.( 1 + 4 )
⇒ S = 4.5 + 43.5 + ..... + 497.5 + 499.5
⇒ S = 5.( 4 + 43 + ..... + 497 + 499 )
Vì 5 ⋮ 5 ⇒ S ⋮ 5 ( đpcm )
Câu b tương tự .

\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{99}.\left(1+4\right)\)
\(=4.5+4^3.5+...+4^{99}.5\)
\(=5.\left(4+4^3+...+4^{99}\right)\text{chia hết cho 5}\left(đpcm\right)\)

5 + 52 + 53 + ... + 599
= 5.(1 + 5 + 52) + 54.(1 + 5 + 52) + ... + 597.(1 + 5 + 52)
= 5.31 + 54.31 + ... + 597.31
= 31.(5 + 54 + .. + 597) chia hết cho 31
4 + 42 + 43 + ... + 499
= 4.(1 + 4 + 42) + 44.(1 + 4 + 42) + ... + 497.(1 + 4 + 42)
= 4.21 + 44.21 + ... + 497.21
= 4.21.(1 + 43 + ... + 496)
= 4.7.3.(1 + 43 + ... + 496)
= 28.3.(1 + 43 + ... + 496) chia hết cho 28
A = 4 +42 + 43 + 44 + 45 +...+ 499 + 4100
= (4 + 42) + (43 + 44) + (45 + 46) +...+ (499 + 4100)
= 4 (1 + 4) +43 ( 1+ 4 ) + 45 ( 1 + 4 )+...+ 499 (1 + 4)
= (1 + 4).(4 + 43 + 45 +...+ 499)
= 5 ( 4 + 43 + 45 +...+499)
Vì A có một thừa số là 5 nên chia hết cho 5