K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nhờ nguyễn huy hải trả lời í cậu í giỏi lắm

19 tháng 9 2015

thì bài bạn đăng là lớp 5 hay 6 nên bạn ý làm được thử hỏi bài lớp 7,8 coi 

những người giỏi á chẳng biết đi đâu mất tiêu rùi 

DD
9 tháng 6 2021

Xét số nguyên \(x\)bất kì. 

\(x=3k\)\(x^3=27k^3⋮9\)

\(x=3k+1\)\(x^3=\left(3k+1\right)^3=27k^3+27k^2+9k+1\equiv1\left(mod9\right)\)

\(x=3k-1\)\(x^3=\left(3k-1\right)^3=27k^3-27k^2+9k-1\equiv-1\left(mod9\right)\)

Vậy lập phương của một số nguyên khi chia cho \(9\)chỉ có thể có dư là \(0,1,8\).

mà \(a^3+b^3+c^3=2007⋮9\)nên có ít nhất một trong ba số hạng đó chia hết cho \(9\).

khi đó nó chia hết cho \(3\).

Vậy \(abc⋮3\).

14 tháng 2 2017

ab=?

18 tháng 2 2017

=1

Chơi trò này đi :)

Ta có cái này : \(a^3+b^3+c^3=3abc\)

Ta đã biết cái này : \(a+b+c=2007\)

Vì ta có cái đã biết kia nên đương nhiên ta sẽ có cái này 

\(a^3+b^3+c^3=2007^3\Leftrightarrow\left(a+b+c\right)^3=2007^3\)

Về cái này : \(a^3+b^3+c^3=3abc\)

Ta thấy : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Nên \(\Rightarrow a=b=c\)

Mà cái : \(3abc=2007^3\)

Ta đc : \(a=\frac{2007^3}{3bc}\)

\(b=\frac{2007^3}{3ac}\)

\(c=\frac{2007^3}{3ab}\)

Hoặc như cái này : \(3abc=2007^3\Rightarrow abc=8084294343\)

Thử abc vào đến sáng mai ra thôi.

Hc tốt và tớ lm bừa 

22 tháng 5 2020

@ミ★ɮɾαїŋċɦїℓɗ★彡: Nếu bạn chưa thuộc hết tất cả các hằng đẳng thức thì xin bạn học lại, làm gì có cái chuyện mà a + b + c = 2007 lại có được a3 + b3 + c3 = 20073 được. Không có cái định luật nào như vậy, dù nhânn hay cộng hay làm gì với cả hai vế đi nữa cùng không thể làm ra được ohương tình a3 + b3 + c3 = 20073 được. Và còn nữa. a3 + b3 + c3 khác hoàn toàn với ( a + b + c )3. Nhá bạn. 

Đẳng thức này mới đunsg này,  a + b + c )3 = a3 + b3 + c3 + 3(a + b)(b + c)(a + c).

P/S: Mik sẽ thử làm lại xme nó như thế nào. Vì bài này khá khó, nó xuất hiện vài hằng đẳng thức không như sách giáo khoa. 

18 tháng 7 2019

a)= \(a^2+b^2+c^2-2ab-2bc+2ac-\left(b^2-2bc+c^2\right)-2ab-2ac\)

=\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2-2ab-2ac\)

=\(a^2-4ab\)

18 tháng 7 2019

b) = \(a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2\)\(+2ab-2bc-2ac-2\left(b^2-2bc+c^2\right)\)

=\(2a^2+2b^2+2c^2-4bc-2b^2+4bc-2c^2\)

=\(2a^2\)