Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A chia hết cho 2 sẵn rồi
CM A chia hết cho 30:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)
Gợi ý;
B chia hết cho 5 sắn rồi
chia hết cho 6 nhóm 2 số vào
Chi hết cho 31 nhóm 3 số vào
Bài 1:
\(a)\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^5.5^5}{100^5}=\dfrac{100^5.3125}{100^5}=3125\)
2.
a)A có 36 sô hạng , chia A thành 18 nhóm , mỗi nhóm có 2 số hạng .
Ta có : A = \(\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{35}+3^{36}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{35}.\left(1+3\right)\)
\(A=3.4+3^3.4+...+3^{35}.4\)
\(A=4.\left(3+3^3+...+3^{35}\right)\)
Vậy A chia hết cho 4 .
b)Chia A thành 13 nhóm mỗi nhóm có 3 số hạng
Ta có : \(A=\left(3+3^2+3^3\right)+...+\left(3^{34}+3^{35}+3^{36}\right)\)
\(A=3.\left(1+3+9\right)+...+3^{34}.\left(1+3+9\right)\)
A=\(3.13+...+3^{34}.13\)
A= \(13.\left(3+..+3^{34}\right)\)
Vậy A chia hết cho 13
c) Tương tự như câu a và câu b
\(A=2+2^2+......+2^{59}+2^{60}\)
\(A=2\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(A=2\cdot3+...+2^{59}\cdot3⋮3\)
\(2+2^2+2^3+....+2^{58}+2^{59}+2^{60}\)
\(=2\left(1+2+4\right)+....+2^{58}\left(1+2+4\right)\)
\(=2\cdot7+.....+2^{58}\cdot7⋮7\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
Ta có: f(0) = c \(⋮\) 3
f(1) = a + b + c \(⋮\) 3 \(\Rightarrow\) a + b \(⋮\) 3 (1)
f(-1) = a - b + c \(⋮\) 3 \(\Rightarrow\) a - b \(⋮\) 3 (2)
Từ (1) và (2) suy ra a + b + a - b \(⋮\) 3 và a + b - a + b \(⋮\) 3
\(\Rightarrow\) \(\left\{{}\begin{matrix}2a⋮3\\2b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\end{matrix}\right.\)
Vậy a, b, c \(⋮\) 3
+ \(\left\{{}\begin{matrix}f\left(0\right)⋮3\\f\left(1\right)⋮3\\f\left(-1\right)⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c⋮3\\a+b+c⋮3\\a-b+c⋮3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b⋮3\\a-b⋮3\\c⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a⋮3\\-2b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\\c⋮3\end{matrix}\right.\)
Ta có:
\(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)\)
\(=101.50\)
Để chứng minh \(A\) chia hết cho \(B\) ta chứng minh \(A\) chia hết cho 50 và 101
Ta có:
\(A=\left(13+1003\right)+\left(23+993\right)+...+\left(503+513\right)\)
\(=\left(1+100\right).\left(12+100+1002\right)+\left(2+99\right).\left(22+2.99+992\right)+...+\left(50+51\right).\left(502+50.51+512\right)\)
\(=101.\left(12+100+1002+22+2.99+992+...+502+50.51+512\right)\)
chia hết cho 101 ( 1 )
Lại có:
\(A=\left(13+993\right)+\left(23+983\right)+...+\left(503+1003\right)\)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: A chia hết cho 101 và 50 nên A chia hết cho B
tính luôn kết quả cho dễ CM
Ta có:
(n-1)n(n+1)=n3 - n
\(\Rightarrow\) n3 = n+(n-1)n(n+1)
áp dụng vào A ta được:
\(A=1+2+1.2.3+3+2.3.4+......+100+99.100.101\)
\(=\left(1+2+3+....+100\right)+\left(1.2.3+2.3.4+....+99.100.101\right)\)
\(=5050+101989800=101994850\left(1\right)\)
Ta lại có:
\(B=1+2+3+....+100\)
\(=101+101+101+.....+101\) (50 số hạng)
\(=101.50=5050\left(2\right)\)
từ (1) và (2) ta có:
\(101994850:5050=20197\)
\(\Rightarrow\left(đpcm\right)\)