Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)
\(\text{B = }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)
\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
=> A > B
Vậy A > B
\(\frac{x}{x+4}=\frac{5}{6}=>6x=5\left(x+4\right)=5x+20\)
\(=>6x-5x=20=>x=20\)
\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)
\(\frac{1}{5}A=\frac{1}{5}\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\right)=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\)
\(A-\frac{1}{5}A=\frac{4}{5}A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}-\left(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\right)\)
\(\frac{4}{5}A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}-\frac{1}{5^2}-\frac{1}{5^3}-...-\frac{1}{5^{2013}}\)
\(\frac{4}{5}A=\frac{1}{5}-\frac{1}{5^{2013}}=\frac{5^{2012}-1}{5^{2013}}\)
\(A=\frac{5^{2012}-1}{5^{2013}}:\frac{4}{5}=\frac{5^{2012}-1}{5^{2013}}\times\frac{5}{4}=\frac{5^{2012}-1}{4.5^{2012}}=\frac{1}{4}-\frac{1}{4.5^{2012}}< \frac{1}{4}\)
a) Ta có:
\(\frac{x}{x+4}=\frac{5}{6}\)
\(\Rightarrow6x=5\left(x+4\right)\)
\(\Rightarrow6x=5x+20\)
\(\Rightarrow5x+20-6x=0\)
\(-x=-20\)
\(x=20\)
b)Ta có: \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-21-5x-25=0\)
\(2x=46\)
\(x=23\)
c)Ta có: \(\frac{x+4}{20}=\frac{5}{20}\)
\(\Rightarrow x+4=5\)
\(\Rightarrow x=1\)
1)
\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
mà ab = ab; ac > bc ( vì a > b )
=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
1) \(\frac{x+1}{15}+\frac{x+2}{14}=\frac{x+3}{13}+\frac{x+4}{12}\)
\(\Leftrightarrow\frac{x+16}{15}+\frac{x+16}{14}-\frac{x+16}{13}-\frac{x+16}{12}=0\)
\(\Leftrightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{14}-\frac{1}{13}-\frac{1}{12}\right)=0\)
\(\Leftrightarrow x=-16\)
2)3)4) tương tự
Gợi ý : 2) cộng 3 vào cả hai vế
3)4) cộng 2 vào cả hai vế
5) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=-3\)
\(\Leftrightarrow\frac{x+21}{20}+\frac{x+21}{19}+\frac{x+21}{18}=0\)
\(\Leftrightarrow\left(x+21\right)\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}\right)=0\)
\(\Leftrightarrow x=-21\)
6) sửa VT = 4 rồi tương tự câu 5)
Ta có : \(\frac{20}{60.63}+\frac{20}{63.66}+.....+\frac{20}{117.120}+\frac{20}{2011}\)
\(=\left(\frac{20}{60.63}+\frac{20}{63.66}+.....+\frac{20}{117.120}\right)+\frac{20}{2011}\)
\(=\frac{20}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+.....+\frac{3}{117.120}\right)+\frac{20}{2011}\)
\(=\frac{20}{3}\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+.....+\frac{1}{117}-\frac{1}{120}\right)+\frac{20}{2011}\)
\(=\frac{20}{3}.\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{20}{2011}\)
\(=\frac{20}{3}.\frac{1}{120}+\frac{20}{2011}\)
\(=\frac{1}{18}+\frac{20}{2011}\)
Ta có:
\(A=\frac{20}{60.63}+\frac{20}{63.66}+...+\frac{20}{117.120}+\frac{20}{2011}\)
\(\Rightarrow A=\left(\frac{20}{60.63}+\frac{20}{63.66}+...+\frac{20}{117.120}\right)+\frac{20}{2011}\)
\(\Rightarrow A=\frac{20}{3}.\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{20}{2011}\)
\(\Rightarrow A=\frac{20}{3}.\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{20}{2011}\)
\(\Rightarrow A=\frac{20}{3}.\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{20}{2011}\)
\(\Rightarrow A=\frac{20}{3}.\frac{1}{120}+\frac{20}{2011}=\frac{1}{18}+\frac{20}{2011}\)
\(B=\frac{5}{40.44}+\frac{5}{44.48}+\frac{5}{48.52}+...+\frac{5}{76.80}+\frac{5}{2011}\)
\(\Rightarrow B=\left(\frac{5}{40.44}+\frac{5}{44.48}+\frac{5}{48.52}+...+\frac{5}{76.80}\right)+\frac{5}{2011}\)
\(\Rightarrow B=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+\frac{1}{48}-\frac{1}{52}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2011}\)
\(\Rightarrow B=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2011}\)
\(\Rightarrow B=\frac{5}{4}.\frac{1}{80}+\frac{5}{2011}=\frac{1}{64}+\frac{5}{2011}\)
Ta có \(A=\frac{1}{18}+\frac{20}{2011}\) và \(B=\frac{1}{64}+\frac{5}{2011}\)
So sánh từng số hạng: \(\frac{1}{18}>\frac{1}{64};\frac{20}{2011}>\frac{5}{2011}\)
\(\Rightarrow A>B\)