K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2019

Đặt \(\left\{{}\begin{matrix}x=\sqrt{a+b}\\y=\sqrt{b+c}\\z=\sqrt{a+c}\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le3\)

Bài toán trở thành: cho \(x^2+y^2+z^2=18\), tìm GTNN \(P=x+y+z\)

\(x\left(3-x\right)\ge0\Rightarrow3x\ge x^2\)

Tương tự ta được \(3y\ge y^2\); \(3z\ge z^2\)

Cộng vế với vế:

\(3\left(x+y+z\right)\ge x^2+y^2+z^2=18\Rightarrow x+y+z\ge6\)

\(\Rightarrow P_{min}=6\) khi \(\left(x;y;z\right)=\left(3;3;0\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(9;0;0\right)\) và các hoán vị

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) a) Tính giá trị biểu thức A khi x = 9b) Tìm x để A = 3 c) Tìm giá trị nhỏ nhất của A 2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)b) Tìm x để B có giá trị âmc) Tìm giá trị nhỏ nhất của B 3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 a) Tìm x để C = 7b) Tìm x để C...
Đọc tiếp

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) 

a) Tính giá trị biểu thức A khi x = 9

b) Tìm x để A = 3 

c) Tìm giá trị nhỏ nhất của A 

2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) 

a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)

b) Tìm x để B có giá trị âm

c) Tìm giá trị nhỏ nhất của B 

3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 

a) Tìm x để C = 7

b) Tìm x để C > 6 

c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\) 

4) Cho biểu thức D =  \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1 

a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0 

b) Tìm x để D có giá trị là \(\dfrac{1}{2}\) 

c) Tìm x để D có giá trị nguyên

5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9 

a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\) 

b) Tìm điều kiện của x để E < 1 

c) Tìm x nguyên để E có giá trị nguyên 

2

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

7 tháng 9 2021

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

4 tháng 9 2021

Áp dụng BĐT Bunhiacopxki ta có: 

\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=3\left(2a+2b+2c\right)=3.2\left(a+b+c\right)=6.2021=12126\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{12126}\)

Dấu ''='' xảy ra khi \(a=b=c=\dfrac{2021}{3}\)

9 tháng 5 2022

\(P=\sqrt{a+b}+\sqrt{b+c}\sqrt{c+a}\)

Aps dụng Bunhia-cốpxki : \(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\)

\(=6.2021=12126\Leftrightarrow P=\sqrt{12126}\)

Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\dfrac{2021}{3}\)

(Refer ;-;)

NV
1 tháng 8 2021

\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Lại có:

\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)

\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)

\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)

Do đó:

\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)

\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)

\(Q^2\ge4\left(a+b+c\right)\ge4\)

\(\Rightarrow Q\ge2\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

1 tháng 8 2021

hàng đầu tiên tìm MaxQ áp dụng bđt nào thế thầy?

23 tháng 6 2021

\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

áp dụng bunhia - cốpxki

\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\)

\(=6.2021=12126< =>P=\sqrt{12126}\)

vậy MAX P=\(\sqrt{12126}\)

24 tháng 6 2021

\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

\(\Rightarrow P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

Áp dụng BĐT Bunyakovsky ta có:

\(P^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)=6\cdot2021\)

\(\Rightarrow P\le\sqrt{6\cdot2021}=\sqrt{12126}\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{2021}{3}\)

Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\frac{2021}{3}\)

NV
21 tháng 8 2021

\(\sqrt{ab}+\sqrt{4b.c}+2\left(a+c\right)\le\dfrac{1}{2}\left(a+b\right)+\dfrac{1}{2}\left(4b+c\right)+2\left(a+c\right)=\dfrac{5}{2}\left(a+b+c\right)\)

\(\Rightarrow P\ge\dfrac{2}{5}\left(\dfrac{1}{a+b+c}-\dfrac{1}{\sqrt{a+b+c}}\right)=\dfrac{2}{5}\left(\dfrac{1}{\sqrt{a+b+c}}-\dfrac{1}{2}\right)^2-\dfrac{1}{10}\ge-\dfrac{1}{10}\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}a+b+c=4\\a=b=\dfrac{c}{4}\end{matrix}\right.\) em tự giải ra a;b;c

21 tháng 8 2021

e cảm ơn ạ

 

a: \(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)

b: A=1/3

=>\(\dfrac{-3}{\sqrt{x}-3}=\dfrac{1}{3}\)

=>căn x-3=-9

=>căn x=-6(loại)

c: căn x-3>=-3

=>3/căn x-3<=-1

=>-3/căn x-3>=1

Dấu = xảy ra khi x=0

11 tháng 8 2023

\(-3+6=-3\) =))