\(2x^2-mx-1=0\)

cm:với mọi m thì pt có nghiệm:

|x|<1

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

Ta có: \(\Delta=m^2+8>0\) nên phương trình luôn có 2 nghiệm phân biệt.

Giờ ta tìm điều kiện để phương trình có 2 nghiệm thỏa mãn

\(\orbr{\begin{cases}x_1< x_2\le-1\\x_1>x_2\ge1\end{cases}}\)

TH 1: \(x_1< x_2\le-1\)

\(\Rightarrow\hept{\begin{cases}2\left(2.\left(-1\right)^2+m-1\right)\ge0\\\frac{m}{4}< -1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m\ge-1\\m< -4\end{cases}}\) không có m thỏa mãn

TH 2: \(x_1>x_2\ge1\)

\(\Rightarrow\hept{\begin{cases}2\left(2.\left(1\right)^2-m-1\right)\ge0\\\frac{m}{4}>1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m\le1\\m>4\end{cases}}\) không có m thỏa mãn 

Vậy với mọi m thì phương trình luôn tồn tại ít nhất 1 nghiệm thỏa mãn 

\(-1< x< 1\) hay \(|x|< 1\)

31 tháng 7 2018

a) để phương trình có 1 nghiệm bằng 2

\(\Leftrightarrow m2^2-2.2-4m-1=0\Leftrightarrow-5=0\Rightarrow m\in\varnothing\)

b) để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\1^2+m\left(4m+1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m^2+m+1\end{matrix}\right.\) \(\Leftrightarrow m\ne0\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{m}\\x_1x_2=\dfrac{-4m-1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_2=\dfrac{2}{m}\\2\left(\dfrac{2}{3m}\right)^2=\dfrac{-4m-1}{m}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

c) ta có : \(x_1< 2< x_2\Leftrightarrow\)\(x_1< mx_1x_2< x_2\Leftrightarrow\dfrac{1}{x_2}< m< \dfrac{1}{x_1}\)

\(\Leftrightarrow\dfrac{m}{1-\sqrt{4m^2+m+1}}< m< \dfrac{m}{1+\sqrt{4m^2+m+1}}\)

\(\Leftrightarrow\dfrac{m}{1-\sqrt{4m^2+m+1}}< m< \dfrac{m}{1+\sqrt{4m^2+m+1}}\)

\(\Leftrightarrow m< 0\) vậy \(m< 0\)

d) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{m}\\x_1x_2=\dfrac{-4m-1}{m}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{2}{m}.\left(\dfrac{m}{-4m-1}\right)=2\)

\(\Leftrightarrow\dfrac{2}{-4m-1}=2\Leftrightarrow m=\dfrac{-1}{2}\) vậy \(m=\dfrac{-1}{2}\)

15 tháng 4 2020

đk m ở đầu tiên là m>-9 và ra kq m=-8 nhé

15 tháng 4 2020

tìm đk để pt có 2 nghiệm không âm mới đúng nha

6 tháng 7 2017

2. 

a,  Với m\(=1\Rightarrow x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

b. Ta có \(\Delta=b^2-4ac=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)

\(\Rightarrow\)phương trình luôn có 2 nghiệm \(x_1,x_2\)

c, Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

A=\(\frac{2.x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=\frac{2.x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2+2x_1x_2}\)

\(=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}=\frac{\left(m^2+2\right)-\left(m^2-2m+1\right)}{m^2+2}\)

\(=1+\frac{-\left(m-1\right)^2}{m^2+2}\)

Ta thấy \(\frac{-\left(m-1\right)^2}{m^2+2}\le0\Rightarrow1+\frac{-\left(m-1\right)^2}{m^2+2}\le1\)

\(\Rightarrow MaxA=1\)

Dấu bằng xảy ra\(\Leftrightarrow\) \(m-1=0\Leftrightarrow m=1\)

NV
16 tháng 4 2019

\(a+b+c=1-m+m-1=0\)

\(\Rightarrow\) Pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)

\(\frac{2.1\left(m-1\right)+3}{1+\left(m-1\right)^2+2\left(1+m-1\right)}=1\)

\(\Leftrightarrow2m+1=m^2+2\)

\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)

16 tháng 4 2019

Nguyễn Việt Lâm giúp mk nhá..

31 tháng 5 2017
  1. Phương trình : \(x^2-mx-1=0\) có \(\Delta^'=m^2+4\ge4\)

nên phương trình luôn có 2 nghiệm phân biệt \(x_1;x_2\)theo viet ta có

\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-1\end{cases}}\) do tích hai nghiệm là một số âm nên hai nghiệm luôn trái dấu

  1. câu b ko có yêu cầu đề bài ko làm đc