\(⋮\) 19 với k > 1

Chứng tỏ 102k -1

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2016

Đặt A=\(10^{2k}-1\)

A-\(\left(10^k-1\right)\)=\(10^{2k}-1-\left(10^k-1\right)\)

\(A-\left(10^k-1\right)=10^{2k}-1-10^k+1\)

\(A-\left(10^k-1\right)=\left(10^{2k}-10^k\right)\)

\(A-\left(10^k-1\right)=10^k\left(10^k-1\right)⋮19\)(vì \(10^k-1⋮19\))

\(A-\left(10^k-1\right)⋮19\)

\(\left(10^k-1\right)⋮19\Rightarrow A⋮19\left(đpcm\right)\)

 

 

 

a) 102k - 1 = 102k -10k + 10k -1 = 10k ( 10k -1 ) + ( 10k -1 )  Chia hết cho 19

b) 103k -1 = 103k - 10k + 10k -1 =10k ( 102k -1 ) + ( 10k -1 ) Chia hết cho 19

24 tháng 9 2018

a) Vì \(10^k-1⋮19\Rightarrow10^k-1=19n\left(n\inℕ\right)\)

                                \(\Rightarrow10^k=19n+1\)

                                \(\Rightarrow10^{2k}=\left(10^k\right)^2=\left(19n+1\right)^2=361n^2+38n+1\)

                                \(\Rightarrow10^{2k}-1=361n^2+38n+1-1=361n^2+38n⋮19\)

Vậy.................

b) Ý này bạn làm giống vậy nha

6 tháng 12 2017

\(10^k\)-1 chia hết cho 19=> \(10^k\)  -1 = 19n (n là số tự nhiên)

=>\(10^{k=}19n+1\)=>\(10^{2k}=\left(10^k\right)^2=\left(19n+1\right)^2=\left(19n+1\right).\left(19n+1\right)=361n^2+38n+1\)

=>\(10^{2k}-1=361n^2+38n+1-1=361n^2+38n\)chia hết cho 19 =>\(10^{2k}-1\)chia hết cho 19

21 tháng 11 2017

a)\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)\)

Dễ thấy: \(10^k-1⋮19\Rightarrow\left(10^k-1\right)\left(10^k+1\right)⋮19\)

\(\Rightarrow10^{2k}-1⋮19\)

b)\(10^{3k}-1=\left(10^k-1\right)\left(10^k+10^{2k}+1\right)\)

Dễ thấy: \(10^k-1⋮19\Rightarrow\left(10^k-1\right)\left(10^k+10^{2k}+1\right)⋮19\)

\(\Rightarrow10^{3k}-1⋮19\)

21 tháng 11 2017

Thắng xem mà học tập đây :v

Vì 10k - 1 \(⋮\) 19 => 10k - 1\(\equiv\) 0 (mod 19)

=> 10k \(\equiv\) 1 (mod 19)

a) 10k \(\equiv\) 1 (mod 19)

=> (10k)2 \(\equiv\) 12 (mod 19)

=> 102k \(\equiv\) 1 (mod 19)

=> 102k - 1 \(⋮\) 19

b) 10k \(\equiv\) 1 (mod 19)

=> (10k)3 \(\equiv\) 13 (mod 19)

=> 103k = 1 (mod 19)

=> 103k - 1 \(⋮\) 19

3,

b, Có : abcd = 100ab + cd

= 100.2.cd + cd

= 200cd + cd

= ( 200 + 1 ). cd

= 201. cd

= 3.67 + cd

suy ra abcd chia hết cho 67.

a, Có : abc = abc0

abc0 = 1000a + bc0

= 999a + a + bc0

= 999a + bca

= 27.37a + bca

Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27

suy ra 27. 37a + bca chia hết cho 27

suy ra bca chia hết cho 27.

15 tháng 10 2017

Điều kiện đúng phải là k là số tự nhiên

 a)\(10^k-1⋮19\)

\(\Rightarrow10^k\equiv1\left(mod19\right)\)

\(\Rightarrow10^{2k}\equiv1\left(mod19\right)\)

\(\Rightarrow10^{2k}-1⋮19\)

b) Cách làm tương tự