Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36=\left(a^2+6a\right)\left(a^2+6a+5\right)\left(a^2+6a+8\right)+36\)
Đặt \(a^2+6a=t\) ta có:\(t\left(t+5\right)\left(t+8\right)+36=t\left(t^2+13t+40\right)=t^3+13t^2+40t+36=\left(t+9\right)\left(t+2\right)^2\)
Do đó \(\sqrt{\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}=\sqrt{\left(a^2+6a+9\right)\left(a^2+6a+2\right)^2}=\sqrt{\left(a+3\right)^2\left(a^2+6a+2\right)^2}\)
\(=\left(a+3\right)\left(a^2+6a+2\right)\)(Dấu () ở đây là giá trị tuyệt đối nha)
Do đó với a nguyên thì \(\left(a+3\right)\left(a^2+6a+2\right)\)nguyên (Dấu () ở đây là giá trị tuyệt đối nha)
Vậy nếu a nguyên thì \(\sqrt{\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)nguyên
Nhìn cái D cồng kềnh thế thôi chứ key vô cùng EZ.
\(D=\sqrt{a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)
\(=\sqrt{\left[a\left(a+6\right)\right]\left[\left(a+1\right)\left(a+5\right)\right]\left[\left(a+2\right)\left(a+4\right)\right]+36}\)
\(=\sqrt{\left(a^2+6a\right)\left(a^2+6a+5\right)\left(a^2+6a+8\right)+36}\)
Đặt \(a^2+6a=x\)
Ta có:
\(D=\sqrt{x\left(x+5\right)\left(x+8\right)+36}=\sqrt{x^3+13x^2+40x+36}\)
\(=\sqrt{\left(x+9\right)\left(x+2\right)^2}\)
Thay \(x=a^2+6a\) ta có:
\(D=\sqrt{\left(a^2+6a+9\right)\left(a^2+6a+2\right)^2}=\sqrt{\left(a+3\right)^2\left(a+6a+2\right)^2}=\left(a+3\right)\left(a+6a+2\right)\)
là số nguyên vs a nguyên khác 0 nha !
\(\sqrt{a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)
=\(\sqrt{\left(a\left(a+4\right)\left(a+5\right)\right).\left(\left(a+1\right)\left(a+2\right)\left(a+6\right)\right)+36}\)
\(\sqrt{\left(a^3+9a^2+20a\right).\left(a^3+9a^2+20a+12\right)+36}\)
Đặt a^3+9a^2+20a+6=k(k thuộc Z)
ta có\(\sqrt{\left(k-6\right)\left(k+6\right)+36}=\sqrt{k^2-36+36}=\sqrt{k^2}=k\)
Vì k thuộc Z
=>A thuộc Z
tick nha
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
Bai 1: Ap dung BDT Bunhiacopxki ta co:
\(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)
\(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)
\(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)
\(= (a+b+c)(x+y+z)\)
=> \(Q.E.D\)
Tiep bai 4:Ta co:
BDT <=> \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)
Sau khi khai trien con: \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)
Ap dung BDT Cosi ta co:
\(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)
Lam tuong tu ta co: \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)
\(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)
Lam tuong tu ta co: \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)
Cong (1) voi (2) ta co: VT\(≥ 3(xy+yz+zx)\)(*)
Voi cach lam tuong tu ta cung duoc: VT\(≥ 3(x+y+z) \)(**)
Tu (*) va (**) suy ra : \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)
<=> VT \(≥ 2(x+y+z)+xy+yz+zx\)
=> \(Q.E.D\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:
\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)