K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

\(y=x^3-3x^2+2\)

\(\Rightarrow y^`=3x^2-6x\)

\(y^`\left(\dfrac{23}{9}\right)=k=3\cdot\left(\dfrac{23}{9}\right)^2-6\cdot\dfrac{23}{9}=\dfrac{115}{27}\)

\(y=k\left(x-x_0\right)+y_0=\dfrac{115}{27}\cdot\left(x-\dfrac{23}{9}\right)-2\)

26 tháng 4 2021

Ủa tiếp tuyến đó đi ua A chứ đâu nói A là tiếp điểm đâu anh? Làm như cách anh là đang coi A là tiếp điểm đó :b

NV
2 tháng 4 2021

\(y'=8x^3-8x\)

a. Đường thẳng \(x-48y+1=0\) có hệ số góc \(\dfrac{1}{48}\) nên tiếp tuyến có hệ số góc \(k=-48\)

\(\Rightarrow8x^3-8x=-48\Rightarrow x^3-x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+3\right)=0\Rightarrow x=-2\)

\(y'\left(-2\right)=47\)

Phương trình tiếp tuyến: \(y=-48\left(x+2\right)+47\)

b. Gọi tiếp điểm có hoành độ \(x_0\) 

Phương trình tiếp tuyến: \(y=\left(8x_0^3-8x_0\right)\left(x-x_0\right)+2x^4_0-4x^2_0-1\) (1)

Do tiếp tuyến qua A:

\(\Rightarrow-3=\left(8x_0^3-8x_0\right)\left(1-x_0\right)+2x_0^4-4x^2_0-1\)

\(\Leftrightarrow3x_0^4-4x_0^3-2x_0^2+4x_0-1=0\)

\(\Leftrightarrow\left(x_0-1\right)^2\left(3x_0^2+2x_0-1\right)=0\Rightarrow\left[{}\begin{matrix}x_0=1\\x_0=-1\\x_0=\dfrac{1}{3}\end{matrix}\right.\)

Có 3 tiếp tuyến thỏa mãn. Thay lần lượt các giá trị \(x_0\) bên trên vào (1) là được

9 tháng 8 2018

Chọn D.

NM
21 tháng 3 2022

a. \(y'\left(x_0\right)=-2x_0+3\)

b. phương trình tiếp tuyến tại x0 =2 là 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=-\left(x-2\right)+0\text{ hay }y=-x+2\)

c.\(y_0=0\Rightarrow\orbr{\begin{cases}x_0=1\\x_0=2\end{cases}\Rightarrow PTTT\orbr{\begin{cases}y=x-1\\y=-x+2\end{cases}}}\)

d. vì tiếp tuyến vuông góc với đường thẳng có hệ số góc bằng 1 nên tiếp tuyến có hệ số góc = -1 

hay \(-2x_0+3=-1\Leftrightarrow x_0=2\Rightarrow PTTT:y=-x+2\)

14 tháng 2 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

e)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Chọn B

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

** Hệ số góc

Lời giải:

Bạn chỉ cần nhớ công thức PTTT:

$y=y'(x_0)(x-x_0+y(x_0)$

Gọi $M(x_0,y_0)$ là tiếp điểm:

$y'=3x^2-3=9\Leftrightarrow x=\pm 2$

Nếu $x_0=2\Rightarrow y_0=4$ thì PT tiếp tuyến tại $(2,4)$ là:

$y=9(x-2)+4=9x-14$

Nếu $x_0=-2\Rightarrow y_0=0$. PT tiếp tuyến tuyến tại $(-2,0)$ là:

$y=9(x+2)+0=9x+18$

 

14 tháng 4 2023

Giải thích cho em hiểu rõ hơn Tại sao y 0 lại bằng 4 được không ạ

NV
2 tháng 6 2020

\(y'=x^2-4x+3\)

a/ Tiếp tuyến vuông góc với \(y=x+2\Rightarrow\) tiếp tuyến có hệ số góc k=-1

\(\Rightarrow x_0^2-4x_0+3=-1\)

\(\Leftrightarrow x_0^2-4x_0+4=0\Rightarrow x_0=2\)

\(\Rightarrow y\left(0\right)=\frac{5}{3}\)

Pt tiếp tuyến: \(y=-1\left(x-2\right)+\frac{5}{3}\Leftrightarrow y=-x+\frac{11}{3}\)

b/ Tiếp tuyến song song \(y=3x+2020\Rightarrow\) có hệ số góc \(k=3\)

\(\Leftrightarrow x_0^2-4x_0+3=3\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=1\\x_0=4\Rightarrow y_0=\frac{7}{3}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=3x+1\\y=3\left(x-4\right)+\frac{7}{3}\end{matrix}\right.\)