Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M=x^3+27-(27-8x^3)
=x^3+27-27+8x^3
=9x^3
=9*20^3=72000
b: \(M=x^3-\left(2y\right)^3+16y^3=x^3+8y^3\)
=(x+2y)(x^2-2xy+4y^2)
=0
3, \(C=x^2-8xy+16y^2\)
\(C=x^2-2\cdot4y\cdot x+\left(4y\right)^2\)
\(C=\left(x-4y\right)^2\)
Thay \(x-4y=5\) vào C ta được:
\(C=5^2=25\)
Vậy: ......
4, \(D=9x^2+1620-12xy+4y^2\)
\(D=\left(9x^2-12xy+4y^2\right)+1620\)
\(D=\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]+1620\)
\(D=\left(3x-2y\right)^2+1620\)
Thay \(3x-2y=20\) vào D ta được:
\(D=20^2+1620=400+1620=2020\)
Vậy: ...
3/
\(C=x^2-8xy+16y^2=x^2-2.4.xy+\left(4y\right)^2=\left(x-4y\right)^2\)
Thay x - 4y = 5 ta có: \(C=5^2=25\)
4/
\(D=9x^2-12xy+4y^2+1620\\ =\left(3x\right)^2-3.2.2xy+\left(2y\right)^2+1620\\ =\left(3x-2y\right)^2+1620\)
Thay 3x - 2y = 20. Ta có: \(D=20^2+1620=400+1620=2020\)
Bài 1:
A=x2 +y2 -2x-2y+2xy+5
=x2 +y2 -2x-2y+2xy+1+4
=xy+x2-x+xy+y2-y-y-x+1+4
=x(x+y-1)+y(x+y-1)-1(x+y-1)
=(x+y-1)(x+y-1)
=(x+y-1)2+4.Với x+y=3
=>A=(3-1)2+4=22+4=8
Bài 2:
B=x^2 +4y^2-2x-4y-4xy+10
=-2xy+x2-x-2xy+4y2+2y-x+2y+1-8y+9
=x(x-2y-1)-2y(x-2y-1)-1(x-2y-1)-8y+9
=(x-2y-1)(x-2y-1)-8y+9
=(x-2y-1)2-8y+9
Với x-2y=5.Ta có:... tự thay
Bài 3: chịu
\(a,VT=\left(a+b+c\right)\left(a-b+c\right)\)
\(=\left(a+c+b\right)\left(a+c-b\right)\)
\(=\left(a+c\right)^2-b^2\)
\(=a^2+2ac+c^2-b^2=VP\)
\(b,VT=\left(3x+2y\right)\left(3x-2y\right)-\left(4x-2y\right)\left(4x+2y\right)\)
\(=9x^2-4y^2-16x^2+4y^2=-7x^2=VP\)
\(c,VT=x^3-1-x^3-1=-2=VP\)
\(d,VT=8x^3+1-8x^3+1=2=VP\)
\(e,VT=\left(x^2+2xy+4y^2\right)\left(x-2y-2x+1\right)\)
\(=\left(x^2+2xy+4y^2\right)\left(-x-2y+1\right)\)
\(=-x^3-2x^2y+x^2-2x^2y-4xy^2+2xy-4xy^2-8y^3+4y^2\)
( bn kiểm tra lại đề nhé)
từ giả thiết suy ra x-2y =1
=> (x+2y)(x2+4y2)(x4+16y4)=(x - 2y ) (x+2y)(x2+4y2)(x4+16y4)=
sd hằng đẳngthức để làm tiếp nhé