Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình bổ sung đề nha:
CMR : nếu x3 + y3 + z3 = 3xyz thì x = y = z hoặc x + y + z = 0
Giải:
Ta có: x3 + y3 + z3 = 3xyz
=> x3 + y3 + z3 - 3xyz = 0
=> (x3 + y3) + z3 - 3xyz = 0
=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0
=> [(x + y)3 + z3 ]- [3xy(x + y) + 3xyz] = 0
=> (x + y + z)[(x+y)2 - (x+y)z + z2 ] - 3xy(x+y+z) = 0
=> (x + y +z)(x2 + y2 +z2 - xy - yz - zx) = 0
=>\(\left[{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{matrix}\right.\)
Xét x2 + y2 + z2 - xy - yz - zx = 0, nhân 2 vào 2 vế ta có:
2x2 + 2y2 +2z2 - 2xy - 2yz - 2zx = 0
=> (x2 -2xy+ y2 )+(y2 - 2yz + z2) +(z2 - 2zx + x2) = 0
=> (x-y)2 + (y-z)2 + (z-x)2 = 0
Vì (x - y)2\(\ge\) 0 với mọi x, y
(y-z)2 \(\ge\) 0 với mọi y,z
(z-x)2 \(\ge\) 0 với mọi z,x
Vậy để (x-y)2 + (y-z)2 + (z-x)2 = 0
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\Rightarrow x=y=z\)
Vậy ta có đpcm
Áp dụng tính chất dãy tie số bằng nhau ta có:
\(\frac{x-y-z}{x}=\frac{y-z-x}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-z-x+z-x-y}{x+y+z}=-\frac{\left(x+y+z\right)}{x+y+z}=-1\)
\(\Rightarrow\hept{\begin{cases}x-y-z=-x\\y-z-x=-y\\z-y-x=-z\end{cases}\Rightarrow\hept{\begin{cases}y+z=-2x\\z+x=-2y\\x+y=-2z\end{cases}}}\)
\(\Rightarrow\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=\frac{\left(x+y\right)}{x}.\frac{\left(y+z\right)}{y}.\frac{\left(z+x\right)}{z}=-\frac{8xyz}{xyz}=-8\)
\(x+y+z=0\)
⇔\(-x=y+z\)
⇔\(x^2=\left(y+z\right)^2\)
⇔\(x^2=y^2+2yz+z^2\)
⇔\(y^2+z^2-x^2=-2yz\)
Tương tự:
\(z^2+x^2-y^2=-2zx\)
\(x^2+y^2-z^2=-2xy\)
➞ S = \(\dfrac{1}{-2xy}+\dfrac{1}{-2yz}+\dfrac{1}{-2zx}=\dfrac{x+y+z}{-2xyz}=0\)
Vậy S = 0
Ta có:
\(x+y+z=0\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Rightarrow x^2+y^2+2xy=z^2\)
\(\Rightarrow x^2+y^2-z^2=-2xy\)
Tương tự ta được:
\(S=\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}=-\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=-\frac{1}{2}\cdot\frac{x+y+z}{xyz}=0\)
Vậy S=0