Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +) \(f\left(-2\right)=\left|3x-1\right|=\left|3.\left(-2\right)-1\right|=\left|-7\right|=7\)
+) \(f\left(2\right)=\left|3x-1\right|=\left|3.2-1\right|=\left|5\right|=5\)
+) \(f\left(-\frac{1}{4}\right)=\left|3x-1\right|=\left|3.\left(-\frac{1}{4}\right)-1\right|=\left|-\frac{7}{4}\right|=\frac{7}{4}\)
+) \(f\left(\frac{1}{4}\right)=\left|3x-1\right|=\left|3.\frac{1}{4}-1\right|=\left|-\frac{1}{4}\right|=\frac{1}{4}\)
b) +) \(f\left(x\right)=10\)
\(\left|3x-1\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=10\\3x-1=-10\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{3}\\x=-3\end{cases}}\)
+) \(f\left(x\right)=-3\)
\(\left|3x-1\right|=-3\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=-3\\3x-1=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=\frac{4}{3}\end{cases}}\)
+) \(f\left(x\right)=1-x\)
\(\left|3x-1\right|=1-x\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=1-x\\-\left(3x-1\right)=1-x\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)
b. Sửa lại bài b nhé!
+) f (x) =10. đúng
+) f (x ) = -3
Có: \(\left|3x-1\right|=-3\) vô lí vì \(\left|3x-1\right|\ge0\)
=> Không tồn tại x.
+) \(f\left(x\right)=1-x\)
\(\left|3x-1\right|=1-x\)
TH1: \(3x-1\ge0\)
có: 3x -1 = 1 -x
4x = 2
x =1/2 ( thỏa mãn)
TH2: 3x -1 < 0
có: 1 - 3x = 1 - x
2x = 0
x = 0.( thỏa mãn)
Vậy x =1/2 hoặc x =0.
Bài 1:
Thay x=1 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)
Thay x=-2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=3\)
Thay x=0 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(0\right)=2\cdot0^2-5=-5\)
Thay x=2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(2\right)=2\cdot2^2-5=8-5=3\)
Thay \(x=\dfrac{1}{2}\) vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(\dfrac{1}{2}\right)=2\cdot\left(\dfrac{1}{2}\right)^2-5=2\cdot\dfrac{1}{4}-5=-\dfrac{9}{2}\)
Vậy: f(1)=-3; f(-2)=3; f(0)=-5; f(2)=3; \(f\left(\dfrac{1}{2}\right)=-\dfrac{9}{2}\)
Bài 1:
\(f(x)=2x^2-5\) thì:
$f(1)=2.1^2-5=-3$
$f(-2)=2(-2)^2-5=3$
$f(0)=2.0^2-5=-5$
$f(2)=2.2^2-5=3$
$f(\frac{1}{2})=2(\frac{1}{2})^2-5=\frac{-9}{2}$
1.
y=f(-1)=3*(-1)-2=-5
y=f(0)=3*0-2=-2
y=f(-2)=3*(-2)-2=-8
y=f(3)=3*3-2=7
Câu 2,3a làm tương tự,chỉ việc thay f(x) thôi.
3b
Khi y=5 =>5=5-2*x=>2*x=0=> x=0
Khi y=3=>3=5-2*x=>2*x=2=>x=1
Khi y=-1=>-1=5-2*x=>2*x=6=>x=3
f(-1)=3.1-2=3-2=1
f(0)=3.0-2=0-2=-2
f(-2)=3.(-2)-2=-6-2=-8
f(3)=3.3-2=9-2=7
\(1.\)
\(\left|-0,75\right|+\frac{1}{4}-2\frac{1}{2}\)
\(=0,75+\frac{1}{4}-\frac{5}{2}\)
\(=\frac{3}{4}+\frac{1}{4}-\frac{10}{4}\)
\(=\frac{4}{4}-\frac{10}{4}\)
\(=\frac{-6}{4}=\frac{-3}{2}\)
\(2.\)
\(a,3\frac{1}{2}-\frac{1}{2}x=\frac{2}{3}\)
\(\frac{7}{2}-\frac{1}{2}x=\frac{2}{3}\)
\(\frac{1}{2}x=\frac{7}{2}-\frac{2}{3}\)
\(\frac{1}{2}x=\frac{17}{6}\)
\(x=\frac{17}{6}:\frac{1}{2}\)
\(x=\frac{17}{3}\)
Vậy x = \(\frac{17}{3}\)
\(b,3,2x+\left(-1,2\right)x+2,7\)\(=-4,9\)
\(x\cdot\left[3,2++\left(-1,2\right)\right]+2,7=-4,9\)
\(x\cdot2+2,7=-4,9\)
\(x\cdot2=-4,9-2,7\)
\(x\cdot2=-7,6\)
\(x=-7,6:2\)
\(x=-3,8\)
Vậy x=-3,8
\(3.\)
\(Có:y=f\left(x\right)\)\(=2x+\frac{1}{2}\)
\(\Rightarrow f\left(0\right)=2\cdot0+\frac{1}{2}\)\(=0+\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow f\left(1\right)=2\cdot1+\frac{1}{2}=2+\frac{1}{2}=\frac{4}{2}+\frac{1}{2}=\frac{5}{2}\)
\(\Rightarrow f\left(\frac{1}{2}\right)=2\cdot\frac{1}{2}+\frac{1}{2}\)\(=\frac{2}{2}+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow f\left(-2\right)=2\cdot\left(-2\right)+\frac{1}{2}=-4+\frac{1}{2}=\frac{-8}{2}+\frac{1}{2}=\frac{-7}{2}\)
a,
Khi f(3)
=> 5 . 32 - 1
= 5 . 9 - 1
= 45 - 1
= 44
Khi f(-2)
=> 5 . ( -2 )2 - 1
= 5 . 4 - 1
= 20 - 1
= 19
b,
Khi f(x) = 79
=> 5x2 - 1 = 79
5x2 = 79 + 1
5x2 = 80
=> x2 = 80 : 5
x2 = 16
x2 = 42
=> x = 4
a)\(f\left(3\right)=5\cdot3^2-1=5\cdot9-1=45-1=44\)
\(f\left(-2\right)=5\cdot\left(-2\right)^2-1=5\cdot4-1=20-1=19\)
b)\(f\left(x\right)=79\Leftrightarrow5x^2-1=79\)
\(\Leftrightarrow5x^2=80\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
thôi tớ giải đc rồi nhé