Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : y - x = 51015 => y = 51015+x (1)
x+y = 316293 (2)
Thay (1) vào (2) ta có : x+x+51015 = 316293
=> 2x = 316293- 51015
=> 2x = 265278
=> x = 132639
Vậy y = 183654
Vậy phân số đó là : 132639/183654 = 13/18
b, Gọi số cần thêm là a
Lúc đó: 13/18 = 13+52/ 18+ a
=> 13/18 = 65/18+a
=> 13(18+a) = 1170
=> 18+a = 90
=> a = 72
Vậy số cần thêm là 72
a) Để phân số A tồn tại \(\Leftrightarrow n-3\ne0\)
\(\Leftrightarrow n\ne3\)
Vậy \(\Leftrightarrow n\ne3\)thì phân số A tồn tại
b) Để A có giá trị nguyên
\(\Leftrightarrow n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
mà \(n-3⋮n-3\)
\(\Rightarrow5⋮n-3\)
\(\Rightarrow n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự tìm nốt n
ta có \(\frac{n-2}{n+3}=\frac{n+3-5}{n+3}\)
vì n+3 chia hết cho n+3
=> 5 chia hết cho n+3
=> n+3 thuộc Ư(5)={ 5:1:-5;-1}
ta có bảng giá trị
n+3 | 5 | 1 | -5 | -1 |
n | 2 | -2 | -7 | -3 |
đ/c | tm | tm | tm | tm |
vậy...........
BÀI LÀM CHO CẢ 2 PHẦN LUÔN NHÉ
\(1)\)
Để \(\frac{13}{a-1}\) là số nguyên thì \(13⋮\left(a-1\right)\)\(\Rightarrow\)\(\left(a-1\right)\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)
Suy ra :
\(a-1\) | \(1\) | \(-1\) | \(13\) | \(-13\) |
\(a\) | \(2\) | \(0\) | \(14\) | \(-12\) |
Vậy \(a\in\left\{2;0;14;-12\right\}\)
\(2)\)
Ta có :
\(\frac{x}{5}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
Do đó :
\(\frac{x}{5}=2\Rightarrow x=2.5=10\)
\(\frac{y}{3}=2\Rightarrow y=2.3=6\)
Vậy x=10 và y=6
1a) Không giảm tính tổng quát, giả sử \(a\ge b\) suy ra \(a=b+m\) \(\left(m\ge0\right)\)
Ta có \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)
\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=\frac{b+m}{b+m}=1+\frac{b+m}{b+m}\)
\(=1+1=2\)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\) (dấu \(=\Leftrightarrow m=0\Leftrightarrow a=b\))
Vậy tổng của một phân số dương với số nghịch đảo của nó lớn hơn hoặc bằng 2.
a)Tham khảo:Câu hỏi của Yêu Chi Pu - Toán lớp 6 - Học toán với OnlineMath
b) \(P=\frac{3x}{y}+\frac{3y}{x}=3\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2=6\)
\(Q=3\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\right)\ge3\left(2+2+2\right)=18\)