Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D' là giao điểm của BD và AH bạn nhớ thêm vào hình vẽ nhé!
Áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+62
BC2=36+36
BC2=72
⇒BC=\(\sqrt{72}\)
xét hai tam giác vuông AND và HBD có:
\(\widehat{DBH}\)=\(\widehat{DBA}\) (BC là tia phân giác của \(\widehat{ABH}\) )
BD là cạnh chung
⇒ΔAND=ΔHBD(cạnh-huyền-góc-nhọn)
⇒AB=HB(2 cạnh tương ứng)
⇒ΔABH là tam giác cân
gọi D' là giao điểm của AH và BD ta có:
xét ΔABD' và ΔHBD' có:
\(\widehat{DBH}\) =\(\widehat{DBA}\) (BC là tia phân giác của\(\widehat{HBA}\) )
AB=HB(ΔABH cân tại B)
\(\widehat{AHB}\) =\(\widehat{HAB}\) (ΔABH cân tại B)
⇒ ΔABD' = ΔHBD' (G-C-G)
⇒HD'=AD'(2 cạnh tương ứng)
vì ΔABD' = ΔHBD'
⇒ \(\widehat{HD'B}\) =\(\widehat{AD'B}\) (2 góc tương ứng)(1)
Mà \(\widehat{HD'B}\) +\(\widehat{AD'B}\) (2 góc kề bù)(2)
Từ (1)và(2) ⇒ D'B⊥AH(3)
Từ (1)và(3) ⇒BD là đường trung trực của AH
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
a) Ta có \(\Delta ABC\) vuông tại A
Áp dụng định lí Pi-ta-go vào \(\Delta ABC\) có:
AB2 + AC2 = BC2
=> 42 + 32 = BC2
=> BC2 = 25
=> BC = 5 cm
b) Xét tam giác ABD và tam giác HBD có:
\(\widehat{A}=\widehat{BHD}=90^o\) ( do tam giác ABC vuông tại A và HD vuông góc với BC)
\(\widehat{ABD}=\widehat{HBD}\) ( BD là đường phân giác của góc ABC)
BD là cạnh chung
=> tam giác ABD = tam giác HBD ( cạnh huyền-góc nhọn)
c) Ta có : tam giác HBD vuông tại H ( do HD vuông góc BC)
Mà BD là cạnh huyền
=> BD là cạnh lớn nhất trong tam giác HBD ( trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
=> BD > BH
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
=>ΔDAK=ΔDHC
=>góc ADK=góc HDC
=>góc HDC+góc KDC=180 độ
=>K,D,H thẳng hàng
viết thiếu đầu bài , viết sai đầu bài nx
a) Xét t/giác ABD và t/giác HBD có
BAD=BHD (=90 ĐỘ)
ABD=HBD(BD là tia pg của ABC)
BD là cạnh chung
Do đó t/giác ABD= t/giác HBD (chgn)
b) Vì t/giác ABC vuông tại A
suy ra \(AB^2\)+\(AC^2\)=\(BC^2\)(ĐL PY TA GO)
\(15^2\)+\(20^2\)=\(BC^2\)
225+400=\(BC^2\)
\(BC^2\)=625
BC=25 cm