\(y=3x^2+6x+5\) với mọi x thuộc R

a)Tìm GTNN của hàm số

b)C/m hàm số...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

a) Ta thấy:

\(y=3x^2+6x+5=3(x^2+2x+1)+2\)

\(=3(x+1)^2+2\)

\((x+1)^2\ge 0, \forall x\in\mathbb{R}\Rightarrow y\geq 3.0+2=2\)

Vậy GTNN của $y$ là $2$ tại \((x+1)^2=0\Leftrightarrow x=-1\)

b)

Xét \(x_1,x_2\in\mathbb{R}|x_1,x_2>-1\). Giả sử \(x_1>x_2\)

Khi đó:

\(y(x_1)-y(x_2)=3x_1^2+6x_1+5-(3x_2^2+6x_2+5)\)

\(=3(x_1^2-x_2^2)+6(x_1-x_2)\)

\(=3(x_1+x_2)(x_1-x_2)+6(x_1-x_2)\)

\(=3(x_1-x_2)(x_1+x_2+2)\)

\(x_1>x_2>-1\Rightarrow x_1-x_2>0; x_1+x_2+2>0\)

Do đó: \(y(x_1)-y(x_2)=3(x_1-x_2)(x_1+x_2+2)>0\Rightarrow y(x_1)>y(x_2)\)

Với mọi \(x_1>x_2>-1\in\mathbb{R}\) thì \(y(x_1)>y(x_2)\) nên hàm số đồng biến với mọi $x>-1$

Chứng minh nghịch biến hoàn toàn tương tự, ta chỉ cần chỉ ra \(y(x_1)< y(x_2)\) theo cách trên là được.

a: \(=3\left(x^2+2x+\dfrac{5}{3}\right)\)

\(=3\left(x^2+2x+1+\dfrac{2}{3}\right)\)

\(=3\left(x+1\right)^2+2>=2\)

Dấu '=' xảy ra khi x=-1

b: Lấy x1<x2<-1 

\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{3x_1^2+6x_1-3x_2^2-6x_2}{x_1-x_2}\)

\(=3\left(x_1+x_2\right)+6\)

Vì x1<-1, x2<-1 thì x1+x2<-2

=>3(x1+x2)+6<0

=>Hàm số nghịch biến khi x<-1

18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến

5 tháng 10 2021

\(y=f\left(x\right)=21x-12\sqrt{3}x-m\)

\(=\left(21-12\sqrt{3}\right)x-m\)

vì \(21-12\sqrt{3}>0\)

nên hàm số luôn đồng biến với mọi x thuộc R 

29 tháng 9 2020

\(y=\left(-m^2+4m-10\right)x+4\) 

\(a=-m^2+4m-10\) 

\(=-m^2+4m-4-6\) 

\(=-\left(m-2\right)^2-6\) 

Ta có 

\(\left(m-2\right)^2\ge0\forall m\) 

\(-\left(m-2\right)^2\le0\)   

\(-\left(m-2\right)^2-6\le-6\) 

Vậy a luôn âm 

Vậy hàm số luôn nghịch biến với mọi m