K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

Đường thẳng d đi qua A và có hệ số góc k nên có dạng y= k( x+ 1)   hay

Kx- y+k=0 .

Phương trình hoành độ giao điểm của C  và  d là:

x 3 - 3 x 2 + 4 = k x + k ⇔ ( x + 1 ) ( x 2 - 4 x + 4 - k ) = 0

D cắt tại ba điểm phân biệt khi phương trình (*) có hai nghiệm phân biệt khác -1

⇔ ∆ ' > 0 g ( - 1 ) ≠ 0 ⇔ k > 0 k ≠   9

Khi đó g( x) =0 khi x=2- k ;   x = 2 + k    Vậy các giao điểm của hai đồ thị lần lượt là

A ( - 1 ;   0 ) ; B ( 2 - k ;   3 k - k k ) ; C ( 2 + k ;   3 k + k k ) .

Tính được

B C = 2 k 1 + k 2 , d ( O , B C ) = d ( O , d ) = k 1 + k 2 .

Khi đó 

S ∆ O B C = 1 2 . k k 2 + 1 . 2 k . k 2 + 1 = 1 ⇔ k k = 1 ⇔ k 3 = 1 ⇔ k = 1 .

 

Vậy k= 1 thỏa yêu cầu bài toán.

Chọn C.

21 tháng 4 2016

Ta có \(d:y=mx-m-2\)

Hoành độ giao điểm là nghiệm của phương trình :

\(\frac{x-3}{1-x}=mx-m-2\Leftrightarrow\begin{cases}x\ne1\\mx^2-\left(2m+1\right)x+m-1=0\end{cases}\)

Điều kiện để cắt nhau tại hai điểm phân biệt là : \(\begin{cases}m\ne0\\m>-\frac{1}{8}\end{cases}\)

Gọi \(M\left(x_1;y_1\right);N\left(x_2;y_2\right)\) khi đó \(\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1x_2=\frac{m-1}{2}\end{cases}\)

Ta có \(\overrightarrow{AM}=-2\overrightarrow{AN}\Rightarrow x_1=3-2x_2\)

Từ đó ta có m = 1

NV
1 tháng 9 2021

19.

\(y'=4x^3+6x^2=0\Leftrightarrow2x^2\left(2x+3\right)=0\)

\(y'=0\) có đúng 1 nghiệm bội lẻ \(x=-\dfrac{3}{2}\) nên hàm có 1 cực trị

20.

\(y'=-3x^2+12x-9=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=0\\x=3\Rightarrow y=4\end{matrix}\right.\)

\(y'\left(0\right)=-9\)

\(\Rightarrow\) d cắt (C) tại 3 điểm pb khi \(-9< k< 0\)

21 tháng 4 2016

Hoành độ giao điểm của d : y = mx+2 với (C) là nghiệm phương trình :

\(\begin{cases}x>0\\\log^2_2x-\log_2x^2-3\ge0\end{cases}\)
Dễ thấy với m = 0 thì (1) vô nghiệm. Đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt khác -1. Điều kiện là 

\(\begin{cases}\Delta>0\\m\left(-1\right)^2+m\left(-1\right)+3\ne0\end{cases}\) \(\Leftrightarrow m^2-12m>0\) \(\Leftrightarrow m<0\) hoặc m > 12 (*)

Với (*) giả sử x1, x2 là 2 nghiệm phân biệt của (1), khi đó tọa độ các giao điểm là : 

\(A\left(x_1;mx_1+2\right);B\left(x_2;mx_2+2\right)\)

Dễ thất điểm O không thuộc d nên ABO là một tam giác.

Tam giác ABO vuông tại O khi và chỉ khi :

\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow\left(1+m^2\right)x_1x_2+2m\left(x_1+x_2\right)+4=0\)

Áp dụng định lí Viet ta có : \(x_1+x_2=-1;x_1x_2=\frac{3}{m}\)

Thay vào trên ta được :

\(m^2+4m+3=0\Leftrightarrow m=-3\) hoặc \(m=-1\) (thỏa mãn (*)

Vậy \(m=-3\) hoặc \(m=-1\)

19 tháng 6 2017

+ Phương trình đường thẳng d có dang d: y= kx-1  .
Phương trình hoành độ giao điểm của đồ thị C  và đường thẳng d:

2 x 3 - 3 x 2 - 1 = k x - 1   h a y   x ( 2 x 2 - 3 x - k ) = 0 ⇔

+ Để  C cắt d  tại ba điểm phân biệt khi và chỉ khi  phương trình (2)  có hai nghiệm phân biệt khác 0

⇔ ∆ > 0 0 - k ≠ 0 ⇔ k > - 9 8 k ≠ 0

Vậy chọn  k > - 9 8 k ≠ 0

Chọn B.

21 tháng 11 2018

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

6 tháng 11 2019

Phương trình đường thẳng d; y=k(x-1)+2.

Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d:

x3-3x2+4=  k(x-1)+2. Hay x3-3x2-kx+k+2= 0 (1) 

⇔ ( x - 1 ) ( x 2 - 2 x - k - 2 ) = 0

( C) cắt d  tại ba điểm phân biệt khi  và chỉ khi phương trình  có hai nghiệm phân biệt x1; x2 khác 1

⇔ ∆ ' g > 0 g ( 1 ) ≠ 0 ⇔ k + 3 > 0 - 3 - k ≠ 0 ⇔ k > - 3

Hơn nữa  theo Viet ta có 

x 1 + x 2 = 2 = 2 x I y 1 + y 2 = k ( x 1 + x 2 ) - 2 k + 4 = 4 = 2 y I

nên I  là trung điểm AB.

Vậy chọn k> -3, hay k ∈ (-3; +). Do đó có vô số giá trị k nguyên thỏa mãn yêu cầu bài toán.

Chọn D.

21 tháng 1 2018

NV
4 tháng 8 2021

Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)

Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn

Ta cần tìm B, C sao cho chi vi ABC lớn nhất

Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)

Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\) 

Dấu "=" xảy ra khi tam giác ABC đều

\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)

Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)

Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)

\(\Rightarrow m=-1\)