K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

Đặt \(\frac{x}{z}=\frac{z}{y}=k\)

\(\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)

Khi đó : \(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+z^2}{y^2+\left(yk\right)^2}=\frac{z^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=\frac{z^2}{y^2}=\frac{\left(y.k\right)^2}{y^2}=k^2\)

\(\frac{x}{y}=\frac{y.k^2}{y}=k^2\)

=> \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\left(\text{đpcm}\right)\)

30 tháng 10 2019

\(\frac{x}{z}=\frac{z}{y}\)

cmr: \(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)

\(\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2\)

áp dụng t/c dãy tỉ số = nhau

\(\left(1\right)\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{\left(x^2+z^2\right)}{\left(z^2+y^2\right)}\)

vì \(\left(2\right)\frac{x}{z}=\frac{z}{y}\Rightarrow\frac{x}{y}=\frac{z}{z}\)

từ (1) và (2) =>\(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)

23 tháng 7 2015

bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx

25 tháng 3 2016

rtyuiuydghfrtghhfrfghhgfghjhg

28 tháng 10 2021

Ta có : x/z = z/y ( y,z khác 0 )

⇒ z^2 = xy

⇒ x^2+z^2/y^2+z^2 = x^2+xy/y^2+xy

= x(x + y) / y(y + x)

= x/y

Vậy x^2+z^2/y^2+z^2 = x/y

( đpcm )

27 tháng 10 2019

Ta có \(\frac{x}{z}=\frac{z}{y}\)=> \(\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x^2+z^2}{z^2+y^2}\)(1)

Ta lại có : \(\frac{x}{z}=\frac{z}{y}\)=> \(xy=z^2\)(2) 

Từ (1), (2) có: \(\frac{x^2+z^2}{y^2+z^2}=\frac{x^2}{z^2}=\frac{x^2}{xy}=\frac{x}{y}\)(đpcm)