\(\frac{2}{3}:\frac{1}{2};z:x=1:\frac{4}{7}\)và y+z=66. Khi đó x+y+z=...............">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2015

\(x:z=\frac{2}{3}:\frac{1}{2}=\frac{4}{3}\Rightarrow x=\frac{4}{3}.z\)

\(z:y=1:\frac{4}{7}=\frac{7}{4}\Rightarrow z=y.\frac{7}{4}\)

\(\Rightarrow y+z=y+y.\frac{7}{4}=66\)

\(y.\frac{11}{4}=66\Rightarrow y=24\)

\(\Rightarrow z=24.\frac{7}{4}=42\)

\(\Rightarrow x=42.\frac{4}{3}=56\)

24 tháng 6 2017

Ta có :

\(\dfrac{x}{\dfrac{2}{3}}=\dfrac{z}{0,5};\dfrac{z}{1}=\dfrac{y}{\dfrac{4}{7}}\)

\(\Leftrightarrow\)\(\dfrac{x}{\dfrac{16}{3}}=\dfrac{z}{4}=\dfrac{y}{\dfrac{16}{7}}\)

\(\Rightarrow\)\(\dfrac{z+y}{4+\dfrac{16}{7}}=\dfrac{66}{\dfrac{44}{7}}=10,5\)

[ \(\dfrac{z}{4}=10,5\Rightarrow z=42\) ]

[ \(\dfrac{y}{\dfrac{16}{7}}=10,5\Rightarrow y=24\) ]

[\(\dfrac{x}{\dfrac{16}{3}}=10,5\Rightarrow x=56\) ]

Vậy \(x+y+z=42+24+56=122\)

8 tháng 8 2017

bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt

8 tháng 8 2017

thank bn

21 tháng 12 2016
2/Góc ABE=80° 4/khối lượng thanh nhỏ là 161,2 Hai bài kia ko có thời gian tính
18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

30 tháng 7 2016

Ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2.1}{4}=\frac{3y-3.2}{9}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{\left(2x+3y-z\right)+\left(-2+-6+3\right)}{9}=\frac{50+\left(-5\right)}{9}=\frac{45}{9}=5\)\(\Rightarrow\frac{x-1}{2}=5\Rightarrow x=5.2+1=11\)

\(\Rightarrow\frac{y-2}{3}=5\Rightarrow y=5.3+2=17\)

\(\Rightarrow\frac{z-3}{4}=5\Rightarrow z=5.4+3=23\)

Vậy \(x+y-z=11+17-23=28-23=5\)

 

 

30 tháng 7 2016

Ta có: \(\frac{x-1}{2}=\frac{2x-2}{4};\frac{y-2}{3}=\frac{3y-6}{9}\) 

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\) và \(2x+3y-z=50\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)

\(=\frac{2x+3y-z-\left(2+6-3\right)}{9}=\frac{50-5}{9}=5\)

=> \(x=5.2+1=11\)

\(y=5.3+2=17\)

\(z=5.4+3=23\)