Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Có BĐT : \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với $x,y>0$ ( Chứng minh bằng xét hiệu )
Ta có BĐT : \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\Rightarrow\dfrac{x+y}{x^2+y^2}\le\dfrac{2\left(x+y\right)}{\left(x+y\right)^2}=\dfrac{2}{x+y}\)
Chứng minh tương tự khi đó :
\(P\le\dfrac{2}{x+y}+\dfrac{2}{y+z}+\dfrac{2}{z+x}\)
\(\Rightarrow2P\le\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}=2.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=4032\)
\(\Rightarrow P\le2016\)
\(\Leftrightarrow\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2009\Leftrightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z+1\right)z\left(z+1\right)=2009\)
Ta thấy về trái chia hết cho 3, vế phải không chia hết cho 3 =>đpcm.
12 = (x+ y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) = 1+ 2(xy + yz+ zx) => xy + yz + zx= 0
1 = (x+y+z)3 = (x + y)3 + z3 + 3(x+ y+z)z(x+ y) = x3 + y3 + z3 + 3xy(x+ y) + 3(x+ y)z
= 1 + 3xy(1 - z) + 3(xz + yz) = 1 - 3xyz + 3(xy + xz + yz) = 1 - 3xyz (do xy + xz + yz = 0 )
=> xyz = 0
+) 0 = (xy + yz + zx)2 = x2y2 + y2z2 + z2x2 + 2xyz. (y + x + z) = x2y2 + y2z2 + z2x2
=> x2y2 + y2z2 + z2x2 = 0 => xy = 0 và yz = 0 và zx = 0 => có 2 trong 3 số x; y; z = 0 và số còn lại bằng 1 (vì x + y + z = 1)
=> P = 1