Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 số bất kì chia cho 3 có số dư là 0;1;2
4 số nguyên bất kì chia cho 3 nhận được 1 trong 3 số dư 0;1;2=> có ít nhất 2 số có cùng số dư khi chia hết cho 3
=> (x-y)(x-z)(y-z)(x-t)(z-t) chia hết cho 3
Nếu 2 trong 4 số x;y;z;t có cùng số dư khi chia cho 4 => (x-y)(x-z)...(z-t) chia hết cho 4
Nếu không có cặp số nào có cùng số dư khi chia cho 4 => có 2 số lẻ, 2 số chẵn
hiệu 2 số lẻ chia hết cho 2; hiệu 2 số chẵn chia hết cho 2 => (x-y)(x-z)...(z-t) chia hết cho 4
6x+11y chia hết 31 nên 6x+11y+31y chia hết 31, hay 6x+42y chia hết 31, hay 6(x+7y) chia hết 31, suy ra x+7y chia hết 31 Vì ƯC(6,31)=1
Nếu x+7y chia hết 31 suy ra 6(x+7y) chia hết 31, hay 6x+42y chia hết 31, suy ra 6x+11y+31y chia hết 31, suy ra 6x+11y chia hết 31
TH1:Ta có có:5(6x+11y)+(x+7y):
=30x+55y+x+7y
=31x+62y chia hết cho 31
Vì 5(6x+11y) chia hết cho 31 nên x+7y chia hết cho 31
TH2:Ta có:5(6x+11y)+(x+7y)
=30x+55y+x+7y
=31x+62y chia hết cho 31
Vì x+7y chia hết cho 31 nên 5(6x+11y) chia hết cho 31
Mà 5 không chia hết cho 31 nên (6x+11y) chia hết cho 31
Áp dụng t/c dãy tỉ số bằng nhau :\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Rightarrow\begin{cases}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{cases}\) => x = y = z = t
Thay vào P được : \(P=1+1+1+1=4\)
Sao thủy
Sao kim
Trái đất
Sao hỏa
Sao mộc
Sao thổ
Sao thiên vương
Sao hải vương