K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

\(\dfrac{x}{xyz+xy+x+1}+\dfrac{y}{yzt+yz+y+1}+\dfrac{z}{xzt+zt+z+1}+\dfrac{t}{xyt+tx+t+1}\)

= \(\dfrac{x}{xyz+xy+x+1}+\dfrac{xy}{xyzt+xyz+xy+x}+\dfrac{xyz}{x^2yzt+xyzt+xyz+xy}+\dfrac{xyzt}{x^{2^{ }}y^2zt+x^2yzt+xyzt+xyz}\)

= \(\dfrac{x}{xyz+xy+x+1}+\dfrac{xy}{1+xyz+xy+x}+\dfrac{xyz}{x+1+xyz+xy}+\dfrac{1}{xy+x+1+xyz}\)

= \(\dfrac{x+xy+xyz+1}{x+xy+xyz+1}\)

= 1

14 tháng 1 2019

Thay xyzt = 1 vào P, có:

P= \(\frac{x}{xyz+xy+x+xyzt\ }\) + \(\frac{y}{yzt+yz+y+1}+\frac{z}{xzt+zt+z+xyzt}+\frac{t}{xyt+tx+t+1}\)

\(P=\frac{x}{x.\left(yz+y+1+yzt\right)}+\frac{y}{yzt+yz+y+1}+\frac{z}{z.\left(xt+t+1+xyt\right)}+\frac{t}{xyt+tx+t+1}\)

\(P=\frac{1\ +y}{yz+y+yzt+1}\) \(+\frac{1+t}{xyt+tx+t+1}\)

\(P=\frac{1+y}{yz+y+yzt+xyzt\ }+\frac{1+t}{xyt+tx+t+1}\)

\(P=\frac{1+y}{y.z.\left(xyt+tx+t+1\right)}+\frac{yz+tyz}{yz.\left(xyt+tx+t+1\right)}\)

\(P=\frac{1+y+yz+tyz}{yz.\left(xyt+tx+t+1\right)}=\frac{1+y+yz+tyz}{xyzt.\left(1+y+yz+tyz\right)}=\frac{1}{xyzt}=1\)

KL: P = 1 tại xyzt=1

15 tháng 12 2016

T/c:xyz=1

=>x=1;y=1;z=1

=>T=1/1+1+1   +1/1+1+1   +1/1+1+1

=>T=1/3  +1/3  +1/3

=>T=1

15 tháng 12 2016

Ta co : x.y.z=1

Hay : x=1 ; y=1 va z=1

\(\Rightarrow T=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)

\(=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}\)

\(=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\)

\(\Rightarrow\)T=1 

31 tháng 7 2018

ta có : \(T=\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{x}{xyz+xy+x}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{1}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{y+1}{yz+y+1}+\dfrac{z}{xz+z+1}=\dfrac{xyz+y}{xyz+yz+y}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{xz+1}{xz+z+1}+\dfrac{z}{xz+z+1}=\dfrac{xz+z+1}{xz+z+1}=1\)

18 tháng 3 2019

Theo bài ra, ta có:

\(P=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{x\left(yz+y+1\right)}+\frac{z}{xz+z+xyz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xyz+xy+x}+\frac{z}{z\left(x+1+xy\right)}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+x+1}\)

\(=\frac{x+xy+1}{xy+x+1}\)

\(=1\)

Vậy P = 1

18 tháng 3 2019

Ta có: P = \(\dfrac{x}{xy+x+1}\)+\(\dfrac{y}{yz+y+1}\)+\(\dfrac{z}{xz+z+1}\)

=\(\dfrac{x}{xy+x+1}\)+\(\dfrac{xy}{xyz+xy+x}\)+\(\dfrac{xyz}{x^2yz+xyz+xy}\)

=\(\dfrac{x}{xy+x+1}\)+\(\dfrac{xy}{xy+x+1}\)+\(\dfrac{1}{xy+x+1}\)(vì xyz=1)

=\(\dfrac{x+xy+1}{xy+x+1}\)

=1

Vậy P = 1

27 tháng 11 2017

\(M=\dfrac{x}{x+xy+1}+\dfrac{xy}{xyz+xy+x}+\dfrac{z}{xz+z+xyz}\)

\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{xy+x+1}+\dfrac{z}{\left(xy+x+1\right)z}\)

\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{xy+x+1}+\dfrac{1}{xy+x+1}=1\)

11 tháng 12 2018

Câu hỏi của jgfhjudfhuvfghdf - Toán lớp 8 | Học trực tuyến