Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)
\(\Rightarrow \sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{y+z}}{x}\geq \frac{(y+z)(x+\sqrt{yz})}{x}=y+z+\frac{\sqrt{yz}(y+z)}{x}\)
Hoàn toàn tương tự :
\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+z}}{y}\geq x+z+\frac{\sqrt{xz}(x+z)}{y}\)
\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+y}}{z}\geq x+y+\frac{\sqrt{xy}(x+y)}{z}\)
Cộng theo vế:
\(T\geq 2(x+y+z)+\underbrace{\frac{(x+y)\sqrt{xy}}{z}+\frac{(y+z)\sqrt{yz}}{x}+\frac{(z+x)\sqrt{zx}}{y}}_{M}\)
Ta có:
\(M=\frac{(\sqrt{2}-z)\sqrt{xy}}{z}+\frac{(\sqrt{2}-x)\sqrt{yz}}{x}+\frac{(\sqrt{2}-y)\sqrt{xz}}{y}\)
\(=\sqrt{2}\left(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\right)-(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\)
Áp dụng BĐT AM-GM:
\(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\geq 3\sqrt[3]{\frac{xyz}{xyz}}=3\)
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\leq \frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=\sqrt{2}\)
Do đó: \(M\geq 3\sqrt{2}-\sqrt{2}=2\sqrt{2}\)
\(\Rightarrow T\geq 2(x+y+z)+M\geq 2\sqrt{2}+2\sqrt{2}=4\sqrt{2}\)
Vậy \(T_{\min}=4\sqrt{2}\)
Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)
Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)
\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)
Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)
Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng
Như vậy (3),(4) đúng => (2) đúng
Từ đó suy ra \(T\ge\frac{4}{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)
Ta co:
\(3=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\Rightarrow x+y+z\le3=x^2+y^2+z^2\)
Xet
\(\left(x^2+y+z\right)\left(1+y+z\right)\ge3\left(x+y+z\right)^2\Rightarrow x^2+y+z\ge\frac{\left(x+y+z\right)^2}{1+y+z}\)
\(\Rightarrow VT\le\Sigma_{cyc}\frac{x\left(1+y+z\right)}{\left(x+y+z\right)^2}=\frac{x+y+z+2\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\le\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dau '=' xay ra khi \(x=y=z=1\)
Xét bất đẳng thức : \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Áp dụng ta có :
\(2\left(y^2+z^2\right)\ge\left(y+z\right)^2\)
\(\Leftrightarrow\sqrt{2\left(y^2+z^2\right)}\ge y+z\)
\(\Leftrightarrow\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
Tương tự ta có \(\frac{y^2}{x+z}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}};\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
Cộng theo vế của 3 bđt ta được :
\(A\ge\Sigma\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2+y^2}\\b=\sqrt{y^2+z^2}\\c=\sqrt{z^2+x^2}\end{matrix}\right.\)
Khi đó :
+) \(a+b+c=2017\)
+) \(a^2+b^2-c^2=x^2+y^2+y^2+z^2-z^2-x^2=2y^2\)
\(\Leftrightarrow\frac{a^2+b^2-c^2}{2}=y^2\)
\(\)+) \(\sqrt{2\left(z^2+x^2\right)}=\sqrt{2}c\)
Do đó ta có \(A\ge\frac{a^2+b^2-c^2}{2\sqrt{2c}}+\frac{b^2+c^2-a^2}{2\sqrt{2}a}+\frac{a^2+c^2-b^2}{2\sqrt{2}b}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}\right)\)
\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}-c\right)\right]\)
\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}+2c-3c\right)\right]\ge\frac{1}{2\sqrt{2}}\left[\Sigma\left(2\left(a+b\right)-3c\right)\right]\)
\(=\frac{1}{2\sqrt{2}}\left(a+b+c\right)\)
\(=\frac{1}{2\sqrt{2}}\cdot2017=\frac{2017}{2\sqrt{2}}=\frac{2017\sqrt{2}}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=...\)
Bạn xem lời giải tương tự tại đây:
Câu hỏi của Phạm Nguyễn Cẩm Tú - Toán lớp 7 | Học trực tuyến
\(P=xy+yz+zx+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P\ge xy+yz+zx+\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{zx}}+\frac{9}{x+y+z}\)
\(P\ge xy+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xy}}+yz+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{yz}}+zx+\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{zx}}+3\)
\(P\ge3\sqrt[3]{\frac{xy}{xy}}+3\sqrt[3]{\frac{yz}{yz}}+3\sqrt[3]{\frac{zx}{zx}}+3=12\)
\(P_{min}=12\) khi \(x=y=z=1\)
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
Khi đó \(P=1+1+1+1=4\)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
ms đúng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)