Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với xyz \(\ne\) 0 ta có:
x + y + z = 0 \(\Leftrightarrow\)\(\hept{\begin{cases}y+z=-x\\x+y=-z\\x+z=-y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}(y+z)^2=(-x)^2\\(x+y)^2=(-z)^2\\(x+z)^2=(-y)^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+2yz+z^2=x^2\\x^2+2xy+y^2=z^2\\x^2+2xz+z^2=y^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+z^2-x^2=-2yz\\x^2+y^2-z^2=-2xy\\x^2+z^2-y^2=-2xz\end{cases}}\)
Thay vào P ta được:
P=\(\frac{1}{-2yz}\)\(+\)\(\frac{1}{-2xy}\)\(+\)\(\frac{1}{-2xz}\)\(=\)\(\frac{-x}{2xyz}\)\(+\)\(\frac{-z}{2xyz}\)\(+\)\(\frac{-y}{2xyz}\)\(=\)\(\frac{-(x+y+z)}{2xyz}\)\(=\)0 \((x+y+z=0)\)
Vậy với \(x+y+z=0\)và \(xyz\ne0\)thì \(P=0\)
Xét (1/x+1/y+1/z)^2=1/x^2+1/y^2+1/z^2+2/xy+2/yz+2/xz
=P+2/xy+2/yz+2/xz=P+(2z+2x+2y)/xyz=P+2(x+y+z)/x+y+z=P+2
mà (1/x+1/y+1/z)^2=3
=>p=3-2=1
ý em là bài này hả ?
Cho các số dương x,y,z thoã mãn x+y+z=3 Tìm GTNN của 2(x^3+y^3+z^3)-(x^2+y^2+z^2)+2...
bài làm
ta có : x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-... bạn tự chứng minh nha, khai triển vế phải ra là xong :D)
sau đó áp dụng điều kiện x+y+z=3 rồi thay vào biểu thức ban đầu ta có
BT= 5(x^2+y^2+z^2)-6(xy+yz+zx) + 8xyz +3
= 8(x^2+y^2+z^2)-3(x+y+z)^2 + 8xyz +3
sau đó bạn áp dụng BDT xyz>=(x+y-z)(z+x-y)(y+z-x) sau đó thế x+y+z=3 và khai triển ra ta được
xyz>=(3-2z)(3-2y)(3-2z)=27-18(x+y+z)+1... -8xyz
thay x+y+z=3 ta được:
9xyz >=12(xy+yz+zx)-27
>> BT + xyz >= 8(x^2+y^2+z^2)-27+3+ 12(xy+yz+zx)-27=2(x^2+y^2+z^2)+6(x+y+z)^...
lại có 3(x^2+y^2+z^2)>=(x+y+z)^2 ( BDT Bunhiacopxki) >> (x^2+y^2+z^2)>=3
27xyz<=(x+y+z)^3>> xyz<=1
vậy BT + 1>= BT +xyz >= 6+ 54-51 <> BT >=8. ĐT khi x=y=z=1