K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

{xyz=1

1x+1y+1z<x+y+z

⇔{xyz=1

xyz(1x+1y+1z)<x+y+z{xyz=11x+1y+1z<x+y+z

⇔{xyz=1

xyz(1x+1y+1z)<x+y+z
⇔{xyz=1

xy+yz+zx<x+y+z⇔{xyz=1x+y+z−(xy+yz+zx)>0

⇔{xyz=1

xy+yz+zx<x+y+z

⇔{xyz=1

x+y+z−(xy+yz+zx)>0
Xét tích:
(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0

⇒(x−1)(y−1)(z−1)>0

(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0

⇒(x−1)(y−1)(z−1)>0
Vậy trong 3 số x,y,zx,y,z có 1 số lớn hơn 1, 2 số nhỏ hơn 1 hoặc cả 3 số lớn hơn 1
Tuy nhiên, nếu x,y,z>1⇒xyz>1x,y,z>1⇒xyz>1. Mâu thuẫn với gt
Vậy ta có ĐPCM 

21 tháng 10 2017

Vào google tìm nhé !

13 tháng 9 2016

Ta có : (x - 1)(y - 1)(z - 1) = (xy - x - y + 1)(z - 1) = xyz - xz - yz + z - xy + x + y - 1 = (x + y + z) -\(\frac{xy+yz+xz}{1}\)+ 1 - 1

= x + y + z -\(\frac{xy+yz+xz}{xyz}\)= (x + y + z) - (\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)) > 0 (do gt)

Có 2 trường hợp để (x - 1)(y - 1)(z - 1) > 0 :

_ x - 1 ; y - 1 ; z - 1 > 0 => x ; y ; z > 1 => xyz > 1 (trái với gt - loại)

_ 1 trong 3 số x - 1 ; y - 1 ; z - 1 dương,2 số còn lại âm => 1 trong 3 số x,y,z lớn hơn 1 (đpcm)

14 tháng 2 2018

bé hơn 1

15 tháng 2 2018

Áp dụng công thức : \(x^3+y^3\ge x^2y+xy^2\) ( tự c/m bổ đề này nhé !! )

Ta có : \(\dfrac{1}{1+x^3+y^3}\le\dfrac{xyz}{xyz+x^2y+xy^2}=\dfrac{xyz}{xy\left(z+x+y\right)}=\dfrac{z}{x+y+z}\)(1)

C/m tương tự ta được :\(\dfrac{1}{1+y^3+z^3}\le\dfrac{x}{x+y+z}\)(2)

\(\dfrac{1}{1+z^3+x^3}\le\dfrac{y}{x+y+z}\)(3)

Cộng từng vế của (1) (2)(3) => ĐPCM.

21 tháng 10 2019

Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)

Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))

làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)

vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)

[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)

dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)

28 tháng 9 2018

\(xy+yz+zx=xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì

\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)

Ta co:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)

Từ đây ta co:

\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)

9 tháng 11 2016

Đề bài mâu thuẫn quá. Cả x,y,z đều lớn hơn 0 thì làm sao xyz = 0 được

9 tháng 11 2016

Câu hỏi của Lâm Minh Anh - Toán lớp 9 - Học toán với OnlineMath

25 tháng 2 2017

Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:

A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)

\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)

Dấu "=" xảy ra khi x = y = z = 1

NV
1 tháng 7 2019

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

Ta có đánh giá sau: \(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy, biến đổi tương đương:

\(a^3-a^2b-\left(ab^2-b^3\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Áp dụng:

\(VT=\sum\frac{1}{a^3+b^3+1}=\sum\frac{abc}{a^3+b^3+abc}\le\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=1\Rightarrow\left(x;y;z\right)=1\)

AH
Akai Haruma
Giáo viên
1 tháng 7 2019

Lời giải:

Do $xyz=1$ nên tồn tại $a,b,c>0$ sao cho \((x,y,z)=(\frac{a^2}{bc}, \frac{b^2}{ac}, \frac{c^2}{ab})\)

Khi đó:
\(\text{VT}=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)

Xét hiệu \(a^3+b^3-ab(a+b)=(a-b)^2(a+b)\geq 0, \forall a,b>0\)

\(\Rightarrow a^3+b^3\geq ab(a+b)\)

\(\Rightarrow a^3+b^3+abc\geq ab(a+b+c)\Rightarrow \frac{abc}{a^3+b^3+abc}\leq \frac{abc}{ab(a+b+c)}=\frac{c}{a+b+c}\)

Hoàn toàn tương tự:

\(\frac{abc}{b^3+c^3+abc}\leq \frac{a}{a+b+c};\frac{abc}{c^3+a^3+abc}\leq \frac{b}{a+b+c}\)

Cộng theo vế các BĐT vừa thu được :

\(\Rightarrow \text{VT}\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$