Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (x - 1)(y - 1)(z - 1) = (xy - x - y + 1)(z - 1) = xyz - xz - yz + z - xy + x + y - 1 = (x + y + z) -\(\frac{xy+yz+xz}{1}\)+ 1 - 1
= x + y + z -\(\frac{xy+yz+xz}{xyz}\)= (x + y + z) - (\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)) > 0 (do gt)
Có 2 trường hợp để (x - 1)(y - 1)(z - 1) > 0 :
_ x - 1 ; y - 1 ; z - 1 > 0 => x ; y ; z > 1 => xyz > 1 (trái với gt - loại)
_ 1 trong 3 số x - 1 ; y - 1 ; z - 1 dương,2 số còn lại âm => 1 trong 3 số x,y,z lớn hơn 1 (đpcm)
Áp dụng công thức : \(x^3+y^3\ge x^2y+xy^2\) ( tự c/m bổ đề này nhé !! )
Ta có : \(\dfrac{1}{1+x^3+y^3}\le\dfrac{xyz}{xyz+x^2y+xy^2}=\dfrac{xyz}{xy\left(z+x+y\right)}=\dfrac{z}{x+y+z}\)(1)
C/m tương tự ta được :\(\dfrac{1}{1+y^3+z^3}\le\dfrac{x}{x+y+z}\)(2)
\(\dfrac{1}{1+z^3+x^3}\le\dfrac{y}{x+y+z}\)(3)
Cộng từng vế của (1) (2)(3) => ĐPCM.
Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)
Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))
làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)
vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)
[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)
dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)
\(xy+yz+zx=xyz\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì
\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)
Ta co:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)
Từ đây ta co:
\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)
Đề bài mâu thuẫn quá. Cả x,y,z đều lớn hơn 0 thì làm sao xyz = 0 được
Câu hỏi của Lâm Minh Anh - Toán lớp 9 - Học toán với OnlineMath
Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:
A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)
\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)
Dấu "=" xảy ra khi x = y = z = 1
Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
Ta có đánh giá sau: \(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy, biến đổi tương đương:
\(a^3-a^2b-\left(ab^2-b^3\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Áp dụng:
\(VT=\sum\frac{1}{a^3+b^3+1}=\sum\frac{abc}{a^3+b^3+abc}\le\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=1\Rightarrow\left(x;y;z\right)=1\)
Lời giải:
Do $xyz=1$ nên tồn tại $a,b,c>0$ sao cho \((x,y,z)=(\frac{a^2}{bc}, \frac{b^2}{ac}, \frac{c^2}{ab})\)
Khi đó:
\(\text{VT}=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)
Xét hiệu \(a^3+b^3-ab(a+b)=(a-b)^2(a+b)\geq 0, \forall a,b>0\)
\(\Rightarrow a^3+b^3\geq ab(a+b)\)
\(\Rightarrow a^3+b^3+abc\geq ab(a+b+c)\Rightarrow \frac{abc}{a^3+b^3+abc}\leq \frac{abc}{ab(a+b+c)}=\frac{c}{a+b+c}\)
Hoàn toàn tương tự:
\(\frac{abc}{b^3+c^3+abc}\leq \frac{a}{a+b+c};\frac{abc}{c^3+a^3+abc}\leq \frac{b}{a+b+c}\)
Cộng theo vế các BĐT vừa thu được :
\(\Rightarrow \text{VT}\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
{xyz=1
1x+1y+1z<x+y+z
⇔{xyz=1
xyz(1x+1y+1z)<x+y+z{xyz=11x+1y+1z<x+y+z
⇔{xyz=1
xyz(1x+1y+1z)<x+y+z
⇔{xyz=1
xy+yz+zx<x+y+z⇔{xyz=1x+y+z−(xy+yz+zx)>0
⇔{xyz=1
xy+yz+zx<x+y+z
⇔{xyz=1
x+y+z−(xy+yz+zx)>0
Xét tích:
(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0
⇒(x−1)(y−1)(z−1)>0
(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0
⇒(x−1)(y−1)(z−1)>0
Vậy trong 3 số x,y,zx,y,z có 1 số lớn hơn 1, 2 số nhỏ hơn 1 hoặc cả 3 số lớn hơn 1
Tuy nhiên, nếu x,y,z>1⇒xyz>1x,y,z>1⇒xyz>1. Mâu thuẫn với gt
Vậy ta có ĐPCM
Vào google tìm nhé !