Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
x - y - z = 0 nên x - z = y ; y - x = -z ; z + y = x
Suy ra : B = \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(\Rightarrow B=\frac{y}{z}.\frac{-z}{y}.\frac{x}{z}=-1\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x+y-2014z}{z}=\frac{y+z-2014x}{x}=\frac{z+x-2014y}{y}=\frac{\left(-2012\right)\left(x+y+z\right)}{x+y+z}=-2012\)
Ta có: \(\frac{x+y-2014z}{z}=-2012\Rightarrow x+y-2014z=-2012z\Leftrightarrow x+y=2z\)
Tương tự: \(y+z=2x,z+x=2y\)
Khi đó: \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{2x.2y.2z}{xyz}=8\)
Vậy A=8.
Nguyễn Tất Đạt thiếu 1 trường hợp nha bạn
\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x=-y-z\\y=-x-z\\z=-x-y\end{cases}}\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=\left(-\frac{z}{y}\right).\left(\frac{-x}{z}\right).\left(\frac{-y}{x}\right)=-1\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}\) (1)
Xét 1 trường hợp:
- TH1: x + y + z = 0 \(\Rightarrow\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}\)
Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)
- TH2: \(x+y+z\ne0\)
Từ (1) \(\Rightarrow\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}\)\(\Rightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)
Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=2^3=8\)
ta có y+z-x/x=z+x-y/y=x+y-z/z=y+z-x+z+x-y+x+y-z/x+y+z=(2y-y)+(2x-x)+(2z-z)/x+y+z=y+x+z/x+y+z=1
=>y+z-x/x=1 =>z+x-y/y=1
z+x-y/y=1 x+y-z/z=1
=> y+z-x=x => z+x-y=y
z+x-y=y x+y-z=z
=>2y-2x=x-y =>2z-2y=y-z
3y-3x=0 3z-3y=0
y-x=0 z-y=0
=>x=y =>z=y
=>x=y=z
=> y+z-x/x+z+x-y/y+x+y-z/z= 0,(3)+0,(3)+0,(3)=1
=>x +y+z=0,(3)+0,(3)+0,(3)=1
thay vào b=(1+x/y). (1+y/z). (1+z/x)
b=(1+0,(3)/0,(3)).(1+0,(3)/0,(3)).(1+0,(3)/0,(3))
b=(1+1).(1+1).(1+1)
b=2.2.2
b=2^3
b=8
CÂU TRẢ LỜI TRƯỚC MK BẤM NHẦM
Lời giải:
Ta có:
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+z\right).\left(y+x\right).\left(z+y\right)}{xyz}\)
+) Nếu .\(x+y+z\ne0\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(..............\)
Ta có: x - y - z = 0 \(\Rightarrow\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}\)
\(A=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(A=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\)
Ez
ta có \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)
\(\Leftrightarrow A=\left(\frac{y}{y}+\frac{x}{y}\right)\left(\frac{z}{z}+\frac{y}{z}\right)\left(\frac{x}{x}+\frac{z}{x}\right)\)
\(\Leftrightarrow A=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\left(1\right)\)
theo giả thiết \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z}{x}-\frac{x}{x}=\frac{z+x}{y}-\frac{y}{y}=\frac{x+y}{z}-\frac{z}{z}\)
\(\Leftrightarrow\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Leftrightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
theo tính chất dãy tỉ số bằng nhau
\(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{\left(x+y+z\right)}=2\)
\(\left\{{}\begin{matrix}\frac{y+z}{x}=2\Leftrightarrow y+z=2x\left(2\right)\\\frac{z+x}{y}=2\Leftrightarrow z+x=2y\left(3\right)\\\frac{x+y}{z}=2\Leftrightarrow x+y=2z\left(4\right)\end{matrix}\right.\)
thay (2); (3); (4) vào (1)
\(\Leftrightarrow A=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{2z.2x.2y}{xyz}=\frac{2^3\left(xyz\right)}{\left(xyz\right)}=2^3=8\)