Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dat a=x-y
b=y-z
c=z-x
a+b+c=0=x+y+z
\(\left(\frac{a}{z}+\frac{b}{x}+\frac{c}{y}\right)\left(\frac{z}{a}+\frac{x}{b}+\frac{y}{c}\right)\)
dung bumiakopsky de giai
...........................................
a: x-y-z=0
=>x=y+z; y=x-z; z=x-y
\(K=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y\cdot\left(-z\right)\cdot x}{xyz}=-1\)
b: Tham khảo:
\(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)
\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=0\times2\)
\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)
\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
\(\left[\begin{array}{nghiempt}x-y=0\\x-z=0\\y-z=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=y\\x=z\\y=z\end{array}\right.\)
x = y = z
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)
\(=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)\)
\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2^3\)
\(=8\)
1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)
\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm
2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)
tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1
3) kiểm tra lại xem đề đã chuẩn chưa
(x+y)^3 - 3xy(x+y) + z^3 - 3xyz = 0
(x+y+z) ( (x+y)^2 +z^2 -z(x+y) -3xy) =0
(x+y+z) ( x^2+ 2xy+y^2 +z^2- zx-zy-3xy)=0
(x+y+z) ( x^2+y^2+z^2 -zx-zy -xy)=0
Suy ra x+y+z =0
x+y = -z
y+z = -x
x+z = -y
B = -16 + (-3) +2038 = 2019
Ta có: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\left(x,y,z\ne0\right)\)
+) x + y + z = 0 \(\Rightarrow B=\frac{-16z}{z}+\frac{-3x}{x}-\frac{-2038y}{y}\)
\(=-16-3+2038=2019\)
+) x = y = z \(\Rightarrow B=\frac{16.2z}{z}+\frac{3.2x}{x}-\frac{2038.2y}{y}\)
\(=32+6-4076=-4038\)
\(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Leftrightarrow\)\(\frac{2x}{3}.\frac{1}{12}\)\(=\)\(\frac{3y}{4}.\frac{1}{12}\)\(=\)\(\frac{4z}{5}.\frac{1}{12}\)
\(\Leftrightarrow\)\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Ap dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)
suy ra: \(\hept{\begin{cases}\frac{x}{18}=2\\\frac{y}{16}=2\\\frac{z}{15}=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=36\\y=32\\z=30\end{cases}}\)
Vậy \(x=36;\) \(y=32;\) \(z=30\)