\(x,y,z\ge0\),\(xy+yz+zx>0,z=\left\{x,y,z\right\}\). C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

2 tháng 12 2017

\(\Leftrightarrow\frac{4}{x\left(y+z\right)}\ge1\)

mà \(x\left(y+z\right)\le\frac{\left(x+y+z\right)^2}{4}\)

\(\Rightarrow\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{\left(x+y+z\right)^2}=\frac{16}{16}=1\left(đpcm\right)\)

2 tháng 12 2017

Tuyển ơi, m giải cho ai thế

AH
Akai Haruma
Giáo viên
25 tháng 5 2019

Lời giải:
Áp dụng BĐT AM-GM ta có:

\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)

\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)

Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Cauchy-Schwarz:

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)

\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)

\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)

Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)

Do đó \(\text{VT}\geq \text{VP}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=1$


17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

18 tháng 5 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{xy}{\sqrt{z+xy}}=\frac{xy}{\sqrt{z\left(x+y+z\right)+xy}}=\frac{xy}{\sqrt{xz+yz+z^2+xy}}\)

\(=\frac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{yz}{\sqrt{x+yz}}\le\frac{1}{2}\left(\frac{yz}{x+y}+\frac{yz}{x+z}\right);\frac{xz}{\sqrt{y+xz}}\le\frac{1}{2}\left(\frac{xz}{y+z}+\frac{xz}{x+y}\right)\)

Cộng theo vế các BĐT trên ta có:

\(P\le\frac{1}{2}\left(\frac{xy+yz}{x+z}+\frac{yz+xz}{x+y}+\frac{xy+xz}{y+z}\right)\)

\(=\frac{1}{2}\left(\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}+\frac{x\left(y+z\right)}{y+z}\right)\)

\(=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\left(x+y+z=1\right)\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
11 tháng 10 2020

Đề bài sai

Phản ví dụ: với \(x=y=z=2\Rightarrow x^2+y^2+z^2=12>9\) (thỏa mãn điều kiện)

Nhưng \(\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}=\frac{3}{2}< \sqrt{3}\)

17 tháng 4 2017

hiu hiu

ai giúp giùm vs

17 tháng 4 2017

coooossssi bạn ơi

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số