K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

suy ra:x/2=y/3  ,  y/7 = z/5

suy ra x/14 = y/21 = z/15 = 3x/42 = 5y/105  = 7z/105

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

3x/42= 5y/105 = 7z/105= 3x +5y -7z/42+105-105 = 10/7

suy ra : x= 20

y = 30

z = 150/7

Néu đúng thì k cho mk nha

24 tháng 12 2016

ta có: 3x=2y => \(\frac{x}{2}=\frac{y}{3}\)

5y=7z =>\(\frac{y}{7}=\frac{z}{5}\)

=>\(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\)

=>\(\frac{3x}{42}=\frac{5y}{105}=\frac{7z}{245}=\)\(\frac{3x+5y-7z}{42+105-105}=\frac{60}{42}=\frac{10}{7}\)

\(\frac{x}{14}=\frac{10}{7}\)=> x =20

\(\frac{y}{21}=\frac{10}{7}\)=> y = 30

\(\frac{z}{15}=\frac{10}{7}\) => z=\(\frac{150}{7}\)

Đáp số:20;30;\(\frac{150}{7}\)

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

6 tháng 2 2020

Ta có:

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\) (1).

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{7}=\frac{z}{5}.\)

Có:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}.\)

\(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{21}=\frac{z}{15}.\)

\(\Rightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{15}.\)

\(\Rightarrow\frac{3x}{42}=\frac{5y}{105}=\frac{7z}{105}\)\(3x+5y-7z=60.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{3x}{42}=\frac{5y}{105}=\frac{7z}{105}=\frac{3x+5y-7z}{42+105-105}=\frac{60}{42}=\frac{10}{7}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{14}=\frac{10}{7}\Rightarrow x=\frac{10}{7}.14=20\\\frac{y}{21}=\frac{10}{7}\Rightarrow y=\frac{10}{7}.21=30\\\frac{z}{15}=\frac{10}{7}\Rightarrow z=\frac{10}{7}.15=\frac{150}{7}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(20;30;\frac{150}{7}\right).\)

Chúc bạn học tốt!

9 tháng 2 2020

CẢM ƠNyeu

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 9 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

suy ra:  \(x=2k;\)\(y=3k;\)\(z=4k\)

Ta có:   \(x^2+y^2+z^2=116\)

<=>  \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)

<=>  \(29k^2=116\)

<=>  \(k^2=4\)

<=>  \(k=\pm2\)

tự làm nốt

2 tháng 10 2017

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{7}=\dfrac{z}{5}\)\(3x+5x-7z=60\)

\(\Rightarrow\dfrac{x}{14}=\dfrac{y}{21};\dfrac{y}{21}=\dfrac{z}{15}\)\(3x+5x-7z=60\)

\(\Rightarrow\dfrac{x}{14}=\dfrac{y}{21}=\dfrac{z}{15}\)\(3x+5x-7z=60\)

\(\Rightarrow\dfrac{x}{14}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{3x+5y-7z}{3.14+5.21-7.15}=\dfrac{60}{42}=\dfrac{10}{7}\)

\(\dfrac{x}{14}=\dfrac{10}{7}\Rightarrow x=\dfrac{10}{7}.14=20\)

\(\dfrac{y}{21}=\dfrac{10}{7}\Rightarrow y=\dfrac{10}{7}.21=30\)

\(\dfrac{z}{15}=\dfrac{10}{7}\Rightarrow z=\dfrac{10}{7}.15=\dfrac{150}{7}=21,428..\approx21,438...\)

16 tháng 7 2021

a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)

áp dụng tính chất dãy tỉ số = nhau

\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)

\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)

\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)

\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)

b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)

có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)

\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)

áp dụng t/c dãy tỉ số = nhau

\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)

\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)

\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)

\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)

c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)

thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(=>y=2\)

\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)

d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)

thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)

\(=>x=\dfrac{2.3}{3}=2\)

 

 

16 tháng 7 2021

c, từ đoạn này á

\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)

\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)

21 tháng 9 2017

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}=\frac{7y}{14};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{2y}{14}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}=\frac{3x+5y-7z}{63+70-70}=\frac{30}{63}=\frac{10}{21}\)

\(\frac{3x}{63}=\frac{10}{21}\Rightarrow x=\frac{10}{21}.63:3=10\)

\(\frac{5y}{70}=\frac{10}{21}\Rightarrow y=\frac{10}{21}.70:5=\frac{20}{3}\)

\(\frac{7z}{70}=\frac{10}{21}\Rightarrow z=\frac{10}{21}.70:7=\frac{100}{21}\)