K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2021

thêm x2+y2+z2=1 nha

thêm x2 + y+ z= 1 nha

      HT nha vinh

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((x^4+y^4)(x^2+y^2)\geq (x^3+y^3)^2\)

\((x^3+y^3)(x+y)\geq (x^2+y^2)^2\)

\(\Rightarrow (x^4+y^4)(x^2+y^2)\geq (x^3+y^3).\frac{(x^2+y^2)^2}{x+y}\)

\(\Rightarrow x^4+y^4\geq \frac{(x^3+y^3)(x^2+y^2)}{x+y}\)

\(\Rightarrow \frac{x^4+y^4}{x^3+y^3}\geq \frac{x^2+y^2}{x+y}\).

Tiếp tục áp dụng BĐT Bunhiacopxky: \((x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow \frac{x^2+y^2}{x+y}\geq \frac{x+y}{2}\)

\(\Rightarrow \frac{x^4+y^4}{x^3+y^3}\geq \frac{x+y}{2}\)

Hoàn toàn TT với các phân thức còn lại và cộng theo vế:

\(\Rightarrow P\ge \frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=2013\)

Vậy $P_{\min}=2013$ khi $x=y=z=671$

10 tháng 3 2018

Cách 1:

Áp dụng tính chất cuẩ BĐT, Ta có: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

Lại có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

=> \(x^4+y^4+z^4\ge\frac{\left(\frac{x+y+z}{3}\right)^2}{3}=\frac{16}{27}\)

=> GTNN của \(x^4+y^4+z^4=\frac{16}{27}\) đạt được khi x=y=z=2/3

10 tháng 3 2018

bạn còn cách 2 ko?

25 tháng 11 2016

1, mk nhớ k lầm thì mk  đã từng làm cho bn rồi ,kq=1/2

2,Dễ CM \(x^2+y^2+z^2\ge xy+yz+xz\) ,dấu "=" xảy ra <=>x=y=z

\(=>\left(x+y+z\right)^2\ge\left(xy+yz+xz\right)+2\left(xy+yz+xz\right)=3\left(xy+yz+xz\right)\)

\(=>9\ge3\left(xy+yz+xz\right)=>xy+yz+xz\le\frac{9}{3}=3\)

=>GTLN của xy+yz+xz=3

3)x3+y3+z3=3xyz

<=>x3+y3+z3-3xyz=0

<=>(x+y+z)(x2+y2+z2-xy-yz-xz)=0

<=>x+y+z=0 hoặc x2+y2+z2-xy-yz-xz=0

(+)x+y+z=0 thì x+y=-z;y+z=-x;x+z=-y

thế vô P =-1

(+)x2+y2+z2-xy-yz-xz=0

TH này thì x=y=z

thế vô P=2

14 tháng 2 2018

Ta có:      \(x+y+z=0\)

\(\Leftrightarrow\)  \(\left(x+y+z\right)^2=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2=0\)   (vì  xy + yz + xz =0)

\(\Leftrightarrow\)\(x=y=z=0\)

Vậy      \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)

22 tháng 5 2018

Nguyên việt hiếu tự đặng tự trả lời nice  :)) 

22 tháng 5 2018

ê hiếu  t có 1 cách nhưng mà bị ngược dấu :))  có cần t làm ko :))))