\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

\(\frac{x^3}{x^2+y^2}=\frac{x^3+xy^2-xy^2}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\)

Tương tự, ta có : \(\frac{y^3}{y^2+z^2}\ge y-\frac{z}{2}\)\(;\)\(\frac{z^3}{z^2+x^2}\ge z-\frac{x}{2}\)

Cộng vế theo vế 3 bđt trên ta được : 

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\left(x+y+z\right)-\left(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\right)=3-\frac{3}{2}=\frac{3}{2}\) ( đpcm ) 

14 tháng 5 2017

Ta có   \(VT=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)

Lại có   \(x^2\left(1-x^2\right)^2=\frac{2x^2\left(1-x^2\right)\left(1-x^2\right)}{2}\le\frac{\left(2x^2+1-x^2+1-x^2\right)^3}{54}=\frac{4}{27}\)

\(\Leftrightarrow\)   \(x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\)   \(\Leftrightarrow\)   \(\frac{1}{x\left(1-x^2\right)}\ge\frac{3\sqrt{3}}{2}\)   \(\Leftrightarrow\)   \(\frac{x}{\left(1-x^2\right)}\ge\frac{3\sqrt{3}}{2}x^2\)  (1)

Tương tự cho    \(\frac{y}{\left(1-y^2\right)}\ge\frac{3\sqrt{3}}{2}y^2\)  (2)  và    \(\frac{z}{\left(1-z^2\right)}\ge\frac{3\sqrt{3}}{2}z^2\)   (3)

Cộng vế theo vế ta được   \(VT=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Đẳng thức xảy ra khi và chỉ khi  \(x=y=z=\frac{\sqrt{3}}{3}\)

13 tháng 5 2017

đọc là muốn sỉu rùi! Con học lớp 7 ko hỉu j hết......

17 tháng 5 2017

Bất đẳng thứ côsi hả bạn

17 tháng 5 2017

Mình sửa lại đề nhé:

\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

Dễ dàng chứng minh được: \(x^2+1\ge2x\Leftrightarrow\frac{x}{x^2+1}\le\frac{x}{2x}=\frac{1}{2}\)

Tương tự, ta cũng có: \(\frac{y}{y^2+1}\le\frac{1}{2};\frac{z}{z^2+1}\le\frac{1}{2}\)

Cộng từng vế của 3 BĐT trên ta được ĐPCM.

Ta chứng minh BĐT: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

BĐT này đúng với \(\frac{a}{b}+\frac{b}{a}\ge2\)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\), ta được:

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}\ge\frac{9}{3+3}\ge\frac{3}{2}\)

23 tháng 8 2016

Đặt a = x + y, b = y + z, c = x + z

Từ đó ta có x = \(\frac{a\:+C-b}{2}\), y = \(\frac{a+b-c}{2}\), z = \(\frac{b+c-a}{2}\)

Thì bất đẳng thức thành

\(\frac{a+c-b}{2b}\)\(\frac{b+c-a}{2a}\)\(\frac{a+b-c}{2c}\)<= \(\frac{3}{2}\)

<=> (a/b + b/a) + (a/c + c/a) + (b/c + c/b) <= 6 (đúng)

Vậy bất đẳng thức ban đầu là đúng

23 tháng 8 2016

Mình ghi nhầm đấu nhé >= mà ghi nhầm thành <=

6 tháng 3 2019

Thiếu đk x, y, z nguyên dương phải ko em?

9 tháng 3 2019

dồn hết về một biến rồi áp dụng cô-si là ra

9 tháng 6 2018

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

3 tháng 5 2018

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

29 tháng 1 2019

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\) (áp dụng svacxo)

Áp dụng bđt phụ \(a^2+b^2+c^2\ge ab+bc+ca\)

=>\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2+y^2+z^2=1\\x=y=z\end{cases}\Leftrightarrow x=y=z=\sqrt{\frac{1}{3}}}\)

31 tháng 8 2019

Cách 2:

\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)

Tương tự hai bđt còn lại , cộng theo vế:

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge x^2+y^2+z^2=1\)(đpcm)

Cách 3:

\(\frac{x^3}{y}+\frac{x^3}{y}+y^2\ge3\sqrt[3]{\frac{x^3}{y}.\frac{x^3}{y}.y^2}=3x^2\)

Hay \(\frac{2x^3}{y}\ge3x^2-y^2\)

Tương tự 2 BĐT còn lại rồi cộng theo vế rồi chia cho 2 thu được đpcm

Cách 4:

\(\frac{x^3}{y}+\frac{x^3}{y}+xy+xy\ge4\sqrt[4]{x^8}=4x^2\)

Hay \(\frac{2x^3}{y}\ge4x^2-2xy\). Tương tự hai BĐT còn lại và cộng theo vế rồi làm nốt:v

P/s: Lời giải trên dùng kỹ thuật ghép cặp, một kĩ thuật rất gây ức chế cho em vì nhiều khi nghĩ không ra cần ghép với số nào:v

24 tháng 12 2017
ghhjkkkk