Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)
Dấu "=" xay ra khi \(x=y=z\)
b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)
c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)
d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)
\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)
\(=\frac{2}{3}\left(x+y+z\right)^2=6\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))
a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx
<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )
<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0
<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )
Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z
=> ( * ) đúng
=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z
b. Xài Cauchy cho mới
( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9
<=> 3 ( x2 + y2 + z2 )\(\ge\)9
<=> x2 + y2 + z2\(\ge\)3
Dấu "=" xảy ra <=> x = y = z = 1
Vậy minA = 3 <=> x = y = z = 1
c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9
<=> xy + yz + zx\(\le\)3
Dấu "=" xảy ra <=> x = y = 1
Vậy maxB = 3 <=> x = y = 1
d. x + y + z = 3 . BP 2 vế ta được
x2 + y2 + z2 + 2( xy + yz + zx ) = 9
Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )
=> A + B \(\ge\)6
Dấu "=" xảy ra <=> x = y = z = 1
Vậy min A + B = 6 <=> x = y = z = 1
\(\text{Sử dụng AM-GM, ta có}\)
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
\(xy+yz+xz\le x^2+y^2+z^2\)
\(\text{Cộng theo vế, ta được}\)
\(6=x+y+z+xy+yz+xz\le\sqrt{3\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)
Suy ra\(x^2+y^2+z^2\ge3\)
\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\Rightarrow\frac{x^2+y^2+z^2}{2}+\frac{3}{2}\ge x+y+z\)
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;z^2+x^2\ge2zx\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
Khi đó:\(\frac{3}{2}\left(x^2+y^2+z^2\right)+\frac{3}{2}\ge x+y+z+xy+yz+zx=6\)
\(\Rightarrow x^2+y^2+z^2+1\ge4\Rightarrow x^2+y^2+z^2\ge3\)
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=3^2=9\)
\(\Rightarrow3A\ge9\Rightarrow A\ge3\)
Đẳng thức xảy ra khi \(x=y=z=1\)
b)Ta có BĐT \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\Leftrightarrow-\left(a+b+c\right)^2\le0\)
\(\Rightarrow3B\le\left(x+y+z\right)^2=3^2=9\)
\(\Rightarrow B\le3\)
Đẳng thức xảy ra khi \(x=y=z=1\)
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)
\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)
Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:
\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)
Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)
\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)
Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:
\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)
Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$
x2 + y2 + z2 = xy + yz + xz
2x2 + 2y2 + 2z2 = 2xy + 2yz + 2xz
2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0
x2 - 2xy + y2 + x2 - 2xz + z2 + y2 - 2yz + z2 = 0
(x - y)2 + (x - z)2 + (y - z)2 = 0 mà (x - y)2 ; (x - z)2 ; (y - z)2 đều ko âm
=> (x - y)2 = (x - z)2 = (y - z)2 = 0 => x - y = x - z = y - z = 0 => x = y = z
Chúc bạn học tốt
\(x^2+y^2+z^2+xy+yz+xz\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2xz\right)-\left(xy+yz+xz\right)\)
\(=\left(x+y+z\right)^2-\left(xy+yz+xz\right)\)
Mặt khác: \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow\left(x+y+z\right)^2-\left(xy+yz+xz\right)\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}=9-3=6\)
"=" khi a=b=c=1