\(A=\dfrac{2019x}{xy+2019x+2019}+\dfrac{y}{yz+y+201...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 12 2020

\(A=\dfrac{xyz.x}{xy+xyz.x+xyz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{xyz+yz+y}\)

\(=\dfrac{xz}{1+xz+z}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{xyz}{y+xyz+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{2019}{y+2019+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{yz+y+2019}{yz+y+2019}=1\)

1 tháng 6 2018

â

gh

j

18 tháng 6 2018

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{xy}{z}+\dfrac{yz}{x}\)\(2\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}=2\sqrt{y^2}=2y\left(1\right)\)

\(\dfrac{yz}{x}+\dfrac{xz}{y}\)\(2\sqrt{\dfrac{yz}{x}.\dfrac{xz}{y}}=2\sqrt{z^2}=2z\left(2\right)\)

\(\dfrac{xy}{z}+\dfrac{xz}{y}\)\(2\sqrt{\dfrac{xy}{z}.\dfrac{xz}{y}}=2\sqrt{x^2}=2x\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3) , ta được :

\(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\)\(2\left(x+y+z\right)\)

\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\)\(x+y+z=2019\)

\(P_{Min}=2019\)\(x=y=z=673\)

18 tháng 6 2018

Dụng cosi để tìm GTNN hoặc GTLN nha

6 tháng 4 2017

ta có : \(xy+yz+xz=0\Rightarrow\dfrac{xy+yz+xz}{xyz}=0\)

\(\Leftrightarrow\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}=0\Rightarrow\dfrac{1}{z}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3\)

\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x^3}+3.\dfrac{1}{x^2}.\dfrac{1}{y}+3.\dfrac{1}{x}.\dfrac{1}{y^2}+\dfrac{1}{y^3}\right)\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3.\dfrac{1}{x}.\dfrac{1}{y}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=3.\dfrac{1}{xyz}\)

Do đó : \(xyz.\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)

\(\Leftrightarrow\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=3\)

\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

Vậy giá trị của biểu thức \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

18 tháng 3 2017

\(\left\{{}\begin{matrix}xy+yz+xz=0\\x,y,z\ne0\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}=0\)\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{y^3}+\dfrac{1}{x^3}=\dfrac{3}{zyz}\)

\(A=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=\dfrac{3xyz}{xyz}=3\)

22 tháng 5 2022

\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{z+xz+1}{xz+z+1}\)

\(A=1\)

 

 

 

22 tháng 5 2022

uii sai thì thông cảm nha bạn:<

12 tháng 9 2017

Các thánh giúp e nha Ace Legona Nguyễn Huy Tú Toshiro Kiyoshi Phương An Akai Haruma @Nguyễn Vũ Phượng Thảo

16 tháng 3 2018

\(x+y+z=2018\)\(\Rightarrow\)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2018}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\\ \Leftrightarrow x^2y+xy^2+xyz+xyz+y^2z+\\ yz^2+zx^2+xyz+z^2x-xyz=0\)

\(\Leftrightarrow x^2y+xy^2+xyz+xyz+\\ y^2z+yz^2+zx^2+z^2x=0\)

\(\Leftrightarrow xy\left(x+y\right)+yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)=0\\ \Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

suy ra x+y=0 hoặc y+z=0 hoặc x+z=0

hay x=-y hoặc y=-z hoặc x=-z

thay vào D ta tính dc kq

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow \frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

Suy ra \(yz=-xy-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xy-xz=x(x-y)-z(x-y)\)

\(\Leftrightarrow x^2+2yz=(x-z)(x-y)\)

\(\Rightarrow \frac{yz}{x^2+2yz}=\frac{yz}{(x-z)(x-y)}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(A=\frac{yz}{(x-y)(x-z)}+\frac{xz}{(y-x)(y-z)}+\frac{xy}{(z-x)(z-y)}\)

\(A=\frac{-yz(y-z)}{(x-y)(y-z)(z-x)}+\frac{-xz(z-x)}{(x-y)(y-z)(z-x)}+\frac{-xy(x-y)}{x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{(x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}=1\)