K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

\(x+y+z=0\Leftrightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{matrix}\right.\)

Nhân theo vế: \(xyz=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(\Rightarrow2=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=-2\)

25 tháng 4 2018

Ta có x + y + z = 0

=> x + y = -z

y + z = -x

x + z = -y

=> M = (x + y)(y + z)(x + z) = (-z)(-x)(-y) = -2

15 tháng 7 2019

Từ x + y + z = 0 ⇒ x + y = -z; y + z = -x; x + z = -y thay vào M ta được

M = (x + y)(y + z)(x + z) = (-z).(-x).(-y) = -xyz mà xyz = 4 nên M = -4

Vậy xyz = 4 và x + y + z = 0 thì M = -4

Chọn đáp án C

3 tháng 5 2018

Ta có \(x+y+z=0\)

=> \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)(1)

và \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)(2)

Thế (1) vào (2), ta có:

\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

=> \(M=\left(-z\right)\left(-x\right)\left(-y\right)\)

=> \(M=xyz=-3\)

Vậy giá trị M là -3.

21 tháng 4 2020

TLMJFDLIIS HFIEHFU ưAUDSEIq

21 tháng 4 2020

1, Tính giá trị biểu thức sau tại x+y+1=0

\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\left(1\right)\)

Ta có: x + y + 1 = 0 => x + y = -1

(1) \(\Leftrightarrow x^2.\left(-1\right)-y^2.\left(-1\right)+\left(x-y\right)\left(x+y\right)+2.\left(-1\right)+3\)

\(=y^2-x^2+\left(x-y\right)\left(-1\right)-2+3\)

\(=\left(y-x\right)\left(y+x\right)-\left(x-y\right)+1\)

\(=\left(y-x\right).\left(-1\right)-x+y+1\)

\(=-y+x-x+y+1\)

\(=1\)

2, Cho xyz=2 và x+y+z=0

Tính giá trị biểu thức

\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có: x + y + z = 0

=> x + y = -z (1)

=> y + z = -x (2)

=> x + z = -y (3)

Từ (1);(2);(3) 

=> \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)<=> (-z).(-x).(-y) = 0

10 tháng 3 2021

Bài 1 : 

\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)

hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)

mà \(xyz=2\Rightarrow-xyz=-2\)

hay N nhận giá trị -2 

Bài 2 : 

\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)

hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

hay biểu thức trên nhận giá trị là 24 

c, Ta có : \(a-b=3\Rightarrow a=3+b\)

hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)

\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi 

10 tháng 3 2021

1.Ta có:\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)

2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)

Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)

Vậy....

4 tháng 10 2019

Cho hỏi ko phải cô giáo có dc làm ko:v

Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)

\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)

Xét \(x+y+z\ne0\) ta có:

\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)

\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)

\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khi đó:

\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)

4 tháng 10 2019

các bạn ơi làm hộ mình với

18 tháng 3 2019

\(x+y+z=0\Leftrightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{matrix}\right.\)

Nhân theo vế: \(xyz=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(\Rightarrow2=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=-2\)

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined