Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(x-2,y-2.z-2\right)=\left(a,b,c\right)\) (a, b, c > 0).
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)
\(\Leftrightarrow\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}=1\)
\(\Leftrightarrow abc+ab+bc+ca=4\).
Nếu \(abc>1\Rightarrow ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}>3\Rightarrow abc+ab+bc+ca>4\) (vô lí).
Vậy \(\left(x-2\right)\left(y-2\right)\left(z-2\right)=abc\le1\).
Đặt a=x-2; b=y-2; c=z-2. Phải chứng minh abc =<1
Thật vậy, từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)ta có:
\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)
Theo BĐT Cauchy ta có:
\(\frac{1}{a+2}=\left(\frac{1}{2}-\frac{1}{b+2}\right)+\left(\frac{1}{2}-\frac{1}{c+2}\right)=\frac{1}{2}\left(\frac{b}{b+2}+\frac{c}{c+2}\right)\ge\sqrt{\frac{bc}{\left(b+2\right)\left(c+2\right)}}\left(1\right)\)
tương tự \(\hept{\begin{cases}\frac{1}{b+2}\ge\sqrt{\frac{ac}{\left(a+2\right)\left(c+2\right)}}\left(2\right)\\\frac{1}{c+2}\ge\sqrt{\frac{ab}{\left(a+2\right)\left(b+2\right)}}\left(3\right)\end{cases}}\)
Nhân các vế của (1)(2)(3) ta được đpcm
Dấu "=" xảy ra <=> a=b=c hay x=y=z=3
\(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)
\(\Leftrightarrow x+y+z+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}=4\)
\(\Leftrightarrow2+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=4\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
Khi đó ta có : \(x+1=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow x+1=\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)\)
\(\Leftrightarrow x+1=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\)
Tương tự : \(y+1=\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)\);
\(z+1=\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)
Ta lần lượt xét các biểu thức :
+) \(\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)
\(=\sqrt{\left[\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\right]^2}\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)
+) \(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\)
\(=\frac{\sqrt{x}}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{z}\right)}+\frac{\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}+\frac{\sqrt{z}}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{z}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)
\(=\frac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\frac{2}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
Do đó ta có :
\(P=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\cdot\frac{2}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(P=2\)
Vậy...
Đặt \(\sqrt{x}=x;\sqrt{y}=y;\sqrt{z}=z\) cho dễ nhìn.
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\x^2+y^2+z^2=2\end{cases}}\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=4\)
\(\Leftrightarrow xy+yz+zx=1\)
Ta có:
\(x\left(1+y^2\right)\left(1+z^2\right)+y\left(1+z^2\right)\left(1+x^2\right)+z\left(1+x^2\right)\left(1+y^2\right)\)
\(=x^2y^2z+y^2z^2x+z^2x^2y+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+x+y+z\)
\(=xyz\left(xy+yz+zx\right)+x^2\left(2-x\right)+y^2\left(2-y\right)+z^2\left(2-z\right)+2\)
\(=-2xyz+2\left(x^2+y^2+z^2\right)-\left(x^3+y^3+z^3-3xyz\right)+2\)
\(=-2xyz+6-\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=-2xyz+6-2=-2xyz+4\)
Ta lại có:
\(\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)=x^2y^2z^2+x^2y^2+y^2z^2+z^2x^2+x^2+y^2+z^2+1\)
\(=x^2y^2z^2+\left(xy+yz+zx\right)^2-2xyz\left(xy+yz+zx\right)+3\)
\(=x^2y^2z^2-2xyz+4=\left(xyz-2\right)^2\)
\(\Rightarrow A=\sqrt{\left(xyz-2\right)^2}.\frac{4-2xyz}{\left(xyz-2\right)^2}\)
Tới đây bí :((
Đặt x-2=a; y-2=b; z-2=c (a,b,c>0)
Ta có: \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)
<=>\(\frac{1}{a+2}=1-\frac{1}{b+2}-\frac{1}{c+2}\Leftrightarrow\frac{1}{a+2}=\frac{1}{2}-\frac{1}{b+2}+\frac{1}{2}-\frac{1}{c+2}\)
<=>\(\frac{1}{a+2}=\frac{b}{2\left(b+2\right)}+\frac{c}{2\left(c+2\right)}\ge2\sqrt{\frac{bc}{4\left(b+2\right)\left(c+2\right)}}=\sqrt{\frac{bc}{\left(b+2\right)\left(c+2\right)}}\left(1\right)\)
Tương tự ta cũng có: \(\frac{1}{b+2}\ge\sqrt{\frac{ca}{\left(c+2\right)\left(a+2\right)}}\left(2\right);\frac{1}{c+2}\ge\sqrt{\frac{ab}{\left(a+2\right)\left(b+2\right)}}\left(3\right)\)
Nhân (1),(2),(3) vế theo vế ta được:
\(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\sqrt{\frac{\left(abc\right)^2}{\left[\left(a+2\right)\left(b+2\right)\left(c+2\right)\right]^2}}\)
<=> \(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(\Leftrightarrow abc\le1\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\) (đpcm)
Dấu "=" xảy ra khi a=b=c=3
Chia hai vế của cho xyz khác 0, ta cần chứng minh:
\(\left(1-\frac{2}{x}\right)\left(1-\frac{2}{y}\right)\left(1-\frac{2}{z}\right)\le\frac{1}{xyz}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\). Bài toán trở thành:
Cho 0 <a,b,c \(< \frac{1}{2}\) thỏa mãn \(a+b+c=1\). Chứng minh rằng:
\(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)\le abc\)
\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
BĐT đến đây trở về dạng quen thuộc! Hoặc không thì nó hiển nhiên đúng theo BĐT Schur
ap dung bdt cauchy schwarz ta co
\(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}>=\frac{\left(x-1+z-1+y-1\right)^2}{x+y+z}=\frac{1}{2}\)
vay min=1/2
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
Đặt \(\hept{\begin{cases}a=x-2\\b=y-2\\c=z-2\end{cases}}\left(a,b,c>0\right)\)
Lúc đó giả thiết được viết lại thành \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)và ta cần chứng minh \(abc\le1\)
Ta có: \(\frac{1}{a+2}=1-\frac{1}{b+2}-\frac{1}{c+2}=\frac{1}{2}-\frac{1}{b+2}+\frac{1}{2}-\frac{1}{c+2}\)
\(=\frac{b}{2\left(b+2\right)}+\frac{c}{2\left(c+2\right)}\ge2\sqrt{\frac{bc}{4\left(b+2\right)\left(c+2\right)}}\)(Theo bất đẳng thức Cauchy cho 2 số dương) (1)
Hoàn toàn tương tự: \(\frac{1}{b+2}\ge2\sqrt{\frac{ca}{4\left(c+2\right)\left(a+2\right)}}\)(2) ; \(\frac{1}{c+2}\ge2\sqrt{\frac{ab}{4\left(a+2\right)\left(b+2\right)}}\)(3)
Nhân theo vế 3 bất đẳng thức (1), (2), (3), ta được:
\(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\sqrt{\left(a+2\right)^2\left(b+2\right)^2\left(c+2\right)^2}}\)
\(\Leftrightarrow\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\Leftrightarrow abc\le1\)(đpcm)
Đẳng thức xảy ra khi \(x=y=z=3\)