Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f: x+y+z=3
=>x^2+y^2+z^2+2(xy+xz+yz)=9
=>2(xy+yz+xz)=6
=>xy+yz+xz=3
mà x+y+z=3
nên x=y=z=1
e: x^2+y^2+2=2(x+y)
=>(x+y)^2-2xy+2-2(x+y)=0
=>(x+y)(x+y-2)-2(xy-1)=0
=>x=y=1
\(x^2+y^2+z^2+3+2\left(x+y+z\right)=0\)
\(\Leftrightarrow x^2+y^2+Z^2=2x+2y+2z=0\)
\(\Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-1\right)^2=0\\\left(z-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-1=0 \\y-1=0\\z-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-1=0\\y-1=0\\z-1=0\end{cases}}\)
Vậy \(x=y=z=1\)
Với mọi x;y;z ta luôn có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2=\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Có (a-b)^2 >=0
<=> a^2 + b^2 >= 2ab (1) ( với mọi a,b)
Tương tự có b^2 + c^2 >= 2bc(2)
c^2 + a^2 >= 2ca(3)
Cộng vế theo vế của (1),(2) và (3) ta có : 2.(a^2+b^2+c^2)>= 2.(ab+bc+ca)
<=> 2.(a^2+b^2+c^2) +a^2+b^2+c^2 >= a^2+b^2+c^2+2.(ab+bc+ca)
<=>3.(a^2+b^2+c^2)>= (a+b+c)^2
<=> a^2+b^2+c^2 >= (a+b+c)^2/3
Áp dụng bđt trên thì x^2+y^2+z^2 >= (x+y+z)^2/3 = 1/3 => ĐPCM
Dấu "=" xảy ra <=> x=y=z=1/3
câu 1:\(3^{30}=3^{3^{10}}=27^{10};5^{20}=5^{2^{10}}=25^{10}\)do 27>25 nên \(27^{10}>25^{10}\)hay \(3^{30}>5^{20}\)
câu 2: mình tạm chỉnh lại đề tý
\(\hept{\begin{cases}x^2=zy\left(1\right)\\y^2=xz\left(2\right)\\z^2=xy\left(3\right)\end{cases}}\)lấy (1) chia (2) và (2) chia (3) ta được\(\hept{\begin{cases}\frac{x^2}{y^2}=\frac{y}{x}\\\frac{y^2}{z^2}=\frac{z}{y}\end{cases}\Rightarrow\hept{\begin{cases}y^3=x^3\\y^3=z^3\end{cases}}\Rightarrow x^3=y^3=z^3\Rightarrow x=y=z}\)
câu 3:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}\right)=\left(x-2010\right).\left(\frac{1}{2007}+\frac{1}{2006}\right)\)
Do đó để 2 vế bằng nhau thì x-2010=0=>x=2010
câu 4: vì x và y là hai đại lượng tỉ lệ nghịch nên ta có Công thức \(x.y=x_1.y_1=x_2.y_2=k\Leftrightarrow2.y_1=3.y_2\Rightarrow y_1=\frac{3}{2}y_2\)
thay \(y_1=\frac{3}{2}y_2\)vào phương trình \(y^2_1+y^2_2=52\)
\(\frac{9}{4}y_2^2+y_2^2=52\Rightarrow\frac{13}{4}y_2^2=52\Rightarrow\hept{\begin{cases}y_2=4\\y_2=-4\end{cases}}\Rightarrow\hept{\begin{cases}y_1=6\\y_1=-6\end{cases}}\)
1/x^2+1/y^2+1/z^2=1/xy+1/yz+1/zx
2:(1/x^2+1/y^2+1/z^2)=2:(1/xy+1/yz+1/zx)
2x^2+2y^2+2z^2=2xy+2yz+2xz
2x^2+2y^2+2z^2-2xy-2yz-2xz=0
(x^2-2xy+y^2)+(x^2-2xz+z^2)+(y^2-2yz+z^2)=0
(x-y)^2+(x-z)^2+(y-z)^2=0
=> (x-y)^2=0 và (x-z)^2=0 và (y-z)^2=0
=> x-y=0 và x-z=0 và y-z=0
=> x=y và x=z và y=z
=> x=y=z (đpcm)
x2+y2+z2=1 => x;y;z \(\le1\)(1)
1= (x+y+z)2= x2+y2+z2+ 2(xy+yz+zx) = 1+ 2(xy+yz+zx) => xy+yz+zx=0 => xy= z(-y-x) = z(z-1)
x3+y3 =1 <=> (x+y)(x2+y2 -xy)=1 <=> (1-z)(1-z2-z(z-1))=1 <=> (z-1)(2z2-z-1)= 2z3 -3z2 =0 <=> z=0 hoặc z= \(\frac{3}{2}\)(loại vì lớn hơn 1)
z=0 => x+y=1; xy= 0;
y=y(x+y) = xy+ y2 = y2
=> x+y2 +z3 = x+ y+ 0 = 1 (điều phải chứng minh)