\(x+y+z=1\)

                \(x^2+y^2+z^2=1\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

Ngu như bò đực lặt.

Bài này mà làm ko ra.......................................a

25 tháng 12 2018

Nếu a thông minh thì lm giúp e đi.

8 tháng 12 2018

Ta có:

\(\left\{{}\begin{matrix}x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)=0\)

Theo đề: \(x+y+z=1\Leftrightarrow x;y;z\le1\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\1-y\ge0\\1-z\ge0\end{matrix}\right.\)

\(\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)\ge0\)

Dấu bằng xảy ra khi: \(x^2\left(1-x\right);y^2\left(1-y\right);z^2\left(1-z\right)=0\)

Kết hợp đk đầu bài x+y+z=1 suy ra x;y;z là hoán vị (0;0;1)

\(\Rightarrow S=1\)

27 tháng 1 2018

vì x+y+z=1

=> (x+y+z)3 =1

=> x3+y3+z3+3(x+y)(y+z)(x+z)=1

=> 1+ 3(x+y)(y+z)(x+z)=1

=> 3(x+y)(y+z)(x+z) =0

=> (x+y)(y+z)(x+z)=0

=> (x+y)=0 hoặc (y+z)=0 hoặc (x+z)=0

với x+y=0 => x=-y

thay x=-y vào x+y+z=1 ta được

z=1

thay x=-y vào x2+y2+z2=1

=> (-y)2+y2+z2=1

=> 2y2+1=1

=> 2y2=0

=> x=y=0

S=x2009+y2010+z2011

S= 0+0+1

S=1

Vậy S=1

29 tháng 1 2018

mơn bạn ak